Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 30(7): 1167-1176.e2, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32084406

RESUMO

Synaptic plasticity, with its two most studied forms, long-term potentiation (LTP) and long-term depression (LTD), is the cellular mechanism underlying learning and memory. Although it has been known for two decades that bidirectional synaptic plasticity necessitates a corresponding bidirectional regulation of calcineurin activity, the underlying molecular mechanism remains elusive. Using organotypic hippocampal slice cultures, we show here that phosphorylation of the endogenous regulator-of-calcineurin (RCAN1) by GSK3ß underlies calcineurin activation and is a necessary event for LTD induction, while phosphorylation of RCAN1 at a PKA site blocks calcineurin activity, thereby allowing LTP induction. Our results provide a new mechanism for the regulation of calcineurin in bidirectional synaptic plasticity and establish RCAN1 as a "switch" for bidirectional synaptic plasticity.


Assuntos
Calcineurina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Neurônios/metabolismo , Ratos/fisiologia , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Ratos/genética , Ratos Sprague-Dawley
2.
J Biol Chem ; 293(24): 9311-9325, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735530

RESUMO

Argonaute (AGO) proteins are essential components of the microRNA (miRNA) pathway. AGO proteins are loaded with miRNAs to target mRNAs and thereby regulate mRNA stability and protein translation. As such, AGO proteins are important actors in controlling local protein synthesis, for instance, at dendritic spines and synapses. Although miRNA-mediated regulation of dendritic mRNAs has become a focus of intense interest over the past years, the mechanisms regulating neuronal AGO proteins remain largely unknown. Here, using rat hippocampal neurons, we report that dendritic Ago2 is down-regulated by the proteasome upon NMDA receptor activation. We found that Ser-387 in Ago2 is dephosphorylated upon NMDA treatment and that this dephosphorylation precedes Ago2 degradation. Expressing Ser-387 phosphorylation-deficient or phosphomimetic Ago2 in neurons, we observed that this phosphorylation site is involved in modulating dendritic spine morphology and postsynaptic density protein 95 (PSD-95) expression in spines. Collectively, our results point toward a signaling pathway linking NMDA receptor-dependent Ago2 dephosphorylation and turnover to postsynaptic structural changes. They support a model in which NMDA receptor-mediated dephosphorylation of Ago2 and Ago2 turnover contributes to the de-repression of mRNAs involved in spine growth and maturation.


Assuntos
Proteínas Argonautas/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ratos , Ratos Sprague-Dawley
3.
Biol Psychiatry ; 83(5): 406-415, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28168961

RESUMO

BACKGROUND: Human studies and mouse models of Alzheimer's disease suggest that the amyloid precursor protein (APP) can cause changes in synaptic plasticity and is contributing to the memory deficits seen in Alzheimer's disease. While most of these studies attribute these changes to the APP cleavage product Aß, in recent years it became apparent that the APP intracellular domain (APP-ICD) might play a role in regulating synaptic plasticity. METHODS: To separate the effects of APP-ICD on synaptic plasticity from Aß-dependent effects, we created a chimeric APP in which the Aß domain is exchanged for its homologous domain from the amyloid precursor-like protein 2. RESULTS: We show that the expression of this chimeric APP has no effect on basal synaptic transmission or synaptic plasticity. However, a synaptic priming protocol, which in control cells has no effect on synaptic plasticity, leads to a complete block of subsequent long-term potentiation induction and a facilitation of long-term depression induction in neurons expressing chimeric APP. We show that the underlying mechanism for this effect on metaplasticity is caused by caspase cleavage of the APP-ICD and involves activation of ryanodine receptors. Our results shed light on the controversially discussed role of APP-ICD in regulating transcription. Because of the short timespan between synaptic priming and the effect on synaptic plasticity, it is unlikely that APP-ICD-dependent transcription is an underlying mechanism for the regulation of metaplasticity during this time period. CONCLUSIONS: Our finding that the APP-ICD affects metaplasticity provides new insights into the altered regulation of synaptic plasticity during Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Doença de Alzheimer/metabolismo , Animais , Quimera , Hipocampo/fisiopatologia , Espaço Intracelular/metabolismo , Ratos
4.
Neurobiol Dis ; 91: 94-104, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26921470

RESUMO

Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Doença de Alzheimer/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Citoplasma/metabolismo , Espaço Intracelular/metabolismo , Neurônios/metabolismo , Ratos , Sinapses/fisiologia
5.
Eur J Neurosci ; 37(12): 1925-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23773061

RESUMO

Alzheimer's disease, with its two most prominent pathological factors amyloid beta and tau protein, can be described as a disease of the synapse. It therefore comes as little surprise that NMDA receptor-related synaptic dysfunction had been thought for several years to underlie the synaptic pathophysiology seen in Alzheimer's disease. In this review I will summarise recent evidence showing that the NMDA receptor links the effects of extracellular amyloid beta with intracellular tau protein. Furthermore, the antagonistic roles of Fyn and STEP in NMDA receptor regulation, synaptic plasticity and induction of synaptic depression will be discussed.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Morte Celular/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia
6.
PLoS One ; 8(6): e65350, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750255

RESUMO

Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aß) in the etiology of Alzheimer's disease. Historically, AD research has mainly focused on the long-term changes caused by Aß rather than analyzing its immediate effects. Here we show that acute perfusion of hippocampal slice cultures with oligomeric Aß depresses synaptic transmission within 20 minutes. This depression is dependent on synaptic stimulation and the activation of NMDA-receptors, but not on NMDA-receptor mediated ion flux. It, therefore, appears that Aß dependent synaptic depression is mediated through a use-dependent metabotropic-like mechanism of the NMDA-receptor, but does not involve NMDA-receptor mediated synaptic transmission, i.e. it is independent of calcium flux through the NMDA-receptor.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Peptídeos beta-Amiloides/química , Animais , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Transporte de Íons , Inibição Neural/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fragmentos de Peptídeos/química , Multimerização Proteica , Estrutura Secundária de Proteína , Ratos
7.
J Biol Chem ; 287(38): 32040-53, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22833681

RESUMO

Amyloid-ß and tau protein are the two most prominent factors in the pathology of Alzheimer disease. Recent studies indicate that phosphorylated tau might affect synaptic function. We now show that endogenous tau is found at postsynaptic sites where it interacts with the PSD95-NMDA receptor complex. NMDA receptor activation leads to a selective phosphorylation of specific sites in tau, regulating the interaction of tau with Fyn and the PSD95-NMDA receptor complex. Based on our results, we propose that the physiologically occurring phosphorylation of tau could serve as a regulatory mechanism to prevent NMDA receptor overexcitation.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Proteínas Proto-Oncogênicas c-fyn/química , Receptores de N-Metil-D-Aspartato/química , Proteínas tau/química , Doença de Alzheimer/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Células HEK293 , Hipocampo/metabolismo , Humanos , Modelos Biológicos , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Ratos , Sinapses/metabolismo
8.
Int J Alzheimers Dis ; 2012: 630182, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22482074

RESUMO

Alzheimer's disease (AD) is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aß) and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aß and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.

9.
Neuron ; 52(5): 831-43, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17145504

RESUMO

Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Espinhas Dendríticas/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Infecções por Alphavirus/genética , Animais , Células Cultivadas , DNA/biossíntese , DNA/genética , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Eletrofisiologia , Endocitose/genética , Endocitose/fisiologia , Ensaio de Imunoadsorção Enzimática , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Immunoblotting , Mutação/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Fosforilação , Ratos , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/genética , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Sindbis virus/genética , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
10.
Learn Mem ; 13(5): 562-5, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16980545

RESUMO

The regulated trafficking of GluR1 contributes significantly to synaptic plasticity, but studies addressing the function of the GluR1 C-terminal PDZ-ligand domain in this process have produced conflicting results. Here, we resolve this conflict by showing that apparently similar C-terminal mutations of the GluR1 PDZ-ligand domain result in opposite physiological phenotypes during activity- and CamKII-induced synaptic plasticity.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Sequência Consenso/genética , Sequência Consenso/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Ligantes , Mutação , Plasticidade Neuronal/genética , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores de AMPA/genética , Transmissão Sináptica/genética , Transfecção
11.
Neuron ; 51(2): 213-25, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16846856

RESUMO

Incorporation of GluR1-containing AMPA receptors into synapses is essential to several forms of neural plasticity, including long-term potentiation (LTP). Numerous signaling pathways that trigger this process have been identified, but the direct modifications of GluR1 that control its incorporation into synapses are unclear. Here, we show that phosphorylation of GluR1 by PKC at a highly conserved serine 818 residue is increased during LTP and critical for LTP expression. GluR1 is phosphorylated by PKC at this site in vitro and in vivo. In addition, acute phosphorylation at GluR1 S818 by PKC, as well as a phosphomimetic mutation, promotes GluR1 synaptic incorporation. Conversely, preventing GluR1 S818 phosphorylation reduces LTP and blocks PKC-driven synaptic incorporation of GluR1. We conclude that the phosphorylation of GluR1 S818 by PKC is a critical event in the plasticity-driven synaptic incorporation of AMPA receptors.


Assuntos
Potenciação de Longa Duração , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Humanos , Potenciação de Longa Duração/genética , Mutagênese Sítio-Dirigida , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Ratos , Receptores de AMPA/genética , Receptores de AMPA/fisiologia , Sinapses/genética , Sinapses/fisiologia
12.
J Neurosci ; 26(7): 2000-9, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16481433

RESUMO

The changes in synaptic morphology and receptor content that underlie neural plasticity are poorly understood. Here, we use a pH-sensitive green fluorescent protein to tag recombinant glutamate receptors and monitor their dynamics onto dendritic spine surfaces. We show that chemically induced long-term potentiation (chemLTP) drives robust exocytosis of AMPA receptors. In contrast, the same stimulus produces a small reduction of NMDA receptors from the spine surface. chemLTP produces similar modification of small and large spines. Interestingly, during chemLTP induction, spines increase in volume before accumulation of AMPA receptors on their surface, indicating that distinct mechanisms underlie changes in morphology and receptor content.


Assuntos
Exocitose/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de Glutamato/fisiologia , Coluna Vertebral/fisiologia , Animais , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Ratos , Receptores de AMPA/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA