Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
2.
Am J Hum Genet ; 111(3): 428, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458165

RESUMO

This article is based on the address given by the author at the 2023 meeting of the American Society of Human Genetics (ASHG) in Washington, D.C. The video of the original address can be found at the ASHG website.


Assuntos
Distinções e Prêmios , Genética Médica , Estados Unidos , Humanos , Liderança
3.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405768

RESUMO

Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 22 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, YWHAE, DPH1, GSDMB, MED24, THRA, EEF1A2, and KCNQ2 in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance and transferability of BD polygenic risk scores across ancestrally diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).

4.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961277

RESUMO

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

5.
Diabetes ; 72(11): 1707-1718, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647564

RESUMO

Understanding differences in adipose gene expression between individuals with different levels of clinical traits may reveal the genes and mechanisms leading to cardiometabolic diseases. However, adipose is a heterogeneous tissue. To account for cell-type heterogeneity, we estimated cell-type proportions in 859 subcutaneous adipose tissue samples with bulk RNA sequencing (RNA-seq) using a reference single-nuclear RNA-seq data set. Cell-type proportions were associated with cardiometabolic traits; for example, higher macrophage and adipocyte proportions were associated with higher and lower BMI, respectively. We evaluated cell-type proportions and BMI as covariates in tests of association between >25,000 gene expression levels and 22 cardiometabolic traits. For >95% of genes, the optimal, or best-fit, models included BMI as a covariate, and for 79% of associations, the optimal models also included cell type. After adjusting for the optimal covariates, we identified 2,664 significant associations (P ≤ 2e-6) for 1,252 genes and 14 traits. Among genes proposed to affect cardiometabolic traits based on colocalized genome-wide association study and adipose expression quantitative trait locus signals, 25 showed a corresponding association between trait and gene expression levels. Overall, these results suggest the importance of modeling cell-type proportion when identifying gene expression associations with cardiometabolic traits.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Humanos , Índice de Massa Corporal , Obesidade/genética , Expressão Gênica , Doenças Cardiovasculares/genética
6.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425837

RESUMO

Metabolites are small molecules that are useful for estimating disease risk and elucidating disease biology. Nevertheless, their causal effects on human diseases have not been evaluated comprehensively. We performed two-sample Mendelian randomization to systematically infer the causal effects of 1,099 plasma metabolites measured in 6,136 Finnish men from the METSIM study on risk of 2,099 binary disease endpoints measured in 309,154 Finnish individuals from FinnGen. We identified evidence for 282 causal effects of 70 metabolites on 183 disease endpoints (FDR<1%). We found 25 metabolites with potential causal effects across multiple disease domains, including ascorbic acid 2-sulfate affecting 26 disease endpoints in 12 disease domains. Our study suggests that N-acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial fibrillation through two distinct metabolic pathways and that N-methylpipecolate may mediate the causal effect of N6, N6-dimethyllysine on anxious personality disorder. This study highlights the broad causal impact of plasma metabolites and widespread metabolic connections across diseases.

7.
Diabetologia ; 66(8): 1472-1480, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280435

RESUMO

AIMS/HYPOTHESIS: Determining how high BMI at different time points influences the risk of developing type 2 diabetes and affects insulin secretion and insulin sensitivity is critical. METHODS: By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had larger effects on adulthood BMI than on childhood BMI, and vice versa. All genome-wide significant genetic variants were then used to separate the independent genetic effects of high childhood BMI from those of high adulthood BMI on the risk of type 2 diabetes and insulin-related phenotypes using Mendelian randomisation. We performed two-sample MR using external studies of type 2 diabetes, and oral and intravenous measures of insulin secretion and sensitivity. RESULTS: We found that a childhood BMI that was one standard deviation (1.97 kg/m2) higher than the mean, corrected for the independent genetic liability to adulthood BMI, was associated with a protective effect for seven measures of insulin sensitivity and secretion, including increased insulin sensitivity index (ß=0.15; 95% CI 0.067, 0.225; p=2.79×10-4) and reduced fasting glucose levels (ß=-0.053; 95% CI -0.089, -0.017; p=4.31×10-3). However, there was little to no evidence of a direct protective effect on type 2 diabetes (OR 0.94; 95% CI 0.85, 1.04; p=0.228) independently of genetic liability to adulthood BMI. CONCLUSIONS/INTERPRETATION: Our results provide evidence of the protective effect of higher childhood BMI on insulin secretion and sensitivity, which are crucial intermediate diabetes traits. However, we stress that our results should not currently lead to any change in public health or clinical practice, given the uncertainty regarding the biological pathway of these effects and the limitations of this type of study.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Índice de Massa Corporal , Fenótipo , Insulina/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
8.
Cell Genom ; 3(2): 100257, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819667

RESUMO

Biobanks of linked clinical patient histories and biological samples are an efficient strategy to generate large cohorts for modern genetics research. Biobank recruitment varies by factors such as geographic catchment and sampling strategy, which affect biobank demographics and research utility. Here, we describe the Michigan Genomics Initiative (MGI), a single-health-system biobank currently consisting of >91,000 participants recruited primarily during surgical encounters at Michigan Medicine. The surgical enrollment results in a biobank enriched for many diseases and ideally suited for a disease genetics cohort. Compared with the much larger population-based UK Biobank, MGI has higher prevalence for nearly all diagnosis-code-based phenotypes and larger absolute case counts for many phenotypes. Genome-wide association study (GWAS) results replicate known findings, thereby validating the genetic and clinical data. Our results illustrate that opportunistic biobank sampling within single health systems provides a unique and complementary resource for exploring the genetics of complex diseases.

9.
medRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798216

RESUMO

Determining how high body-mass index (BMI) at different time points influences the risk of developing type two diabetes (T2D), and affects insulin secretion and insulin sensitivity, is critical. By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had larger effects on adulthood BMI than on childhood BMI, and vice-versa. All genome-wide significant genetic variants were then used to separate the independent genetic effects of high childhood BMI from high adulthood BMI on the risk of T2D and insulin related phenotypes using Mendelian randomisation and studies of T2D, and oral and intravenous measures of insulin secretion and sensitivity. We found that a 1.s.d. (= 1.97kg/m 2 ) higher childhood BMI, corrected for the independent genetic liability to adulthood BMI, was associated with a protective effect for seven measures of insulin sensitivity and secretion, including an increased insulin sensitivity index (ß = 0.15 [0.067, 0.225], p = 2.79×10 -4 ), and reduced fasting glucose (ß = -0.053 [-0.089, -0.017], p = 4.31×10 -3 ). There was however little to no evidence of a direct protective effect on T2D (OR = 0.94 [0.85 - 1.04], p = 0.228), independently of genetic liability to adulthood BMI. Our results thus cumulatively provide evidence of the protective effect of higher childhood BMI on insulin secretion and sensitivity, which are crucial intermediate diabetes traits. However, we stress that our results should not currently lead to any change in public health or clinical practice, given the uncertainty in biological pathway of these effects, and the limitations of this type of study. Research in Context: High BMI in adulthood is associated with higher risk of type two diabetes, coupled with lower insulin sensitivity and secretion.Richardson et al [2020] used genetics to show that high BMI in childhood does not appear to increase the risk of type diabetes independently from its effect on adult BMI.We asked: does high childhood BMI affect insulin related traits such as fasting glucose and insulin sensitivity, independently of adulthood BMI?We used genetics to show that high childhood BMI has a protective effect on seven insulin sensitivity and secretion traits, including fasting glucose and measures of insulin sensitivity and secretion, independently of adulthood BMI.Our work has the potential to turn conventional understanding on its head - high BMI in childhood improves insulin sensitivity (when adjusting for knock on effects to high adult BMI) and opens up important questions about plasticity in childhood and compensatory mechanisms.

10.
Genet Epidemiol ; 47(4): 303-313, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821788

RESUMO

Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Modelos Genéticos , Fatores de Risco , Herança Multifatorial/genética
11.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168419

RESUMO

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

12.
Biol Psychiatry Glob Open Sci ; 2(4): 368-378, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36324647

RESUMO

Background: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche. Methods: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (<13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h 2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.

13.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36055244

RESUMO

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolipídeos , Humanos , Masculino , Metabolômica , Locos de Características Quantitativas/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transcriptoma/genética
14.
Am J Hum Genet ; 109(9): 1653-1666, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981533

RESUMO

Understanding the genetic basis of human diseases and traits is dependent on the identification and accurate genotyping of genetic variants. Deep whole-genome sequencing (WGS), the gold standard technology for SNP and indel identification and genotyping, remains very expensive for most large studies. Here, we quantify the extent to which array genotyping followed by genotype imputation can approximate WGS in studies of individuals of African, Hispanic/Latino, and European ancestry in the US and of Finnish ancestry in Finland (a population isolate). For each study, we performed genotype imputation by using the genetic variants present on the Illumina Core, OmniExpress, MEGA, and Omni 2.5M arrays with the 1000G, HRC, and TOPMed imputation reference panels. Using the Omni 2.5M array and the TOPMed panel, ≥90% of bi-allelic single-nucleotide variants (SNVs) are well imputed (r2 > 0.8) down to minor-allele frequencies (MAFs) of 0.14% in African, 0.11% in Hispanic/Latino, 0.35% in European, and 0.85% in Finnish ancestries. There was little difference in TOPMed-based imputation quality among the arrays with >700k variants. Individual-level imputation quality varied widely between and within the three US studies. Imputation quality also varied across genomic regions, producing regions where even common (MAF > 5%) variants were consistently not well imputed across ancestries. The extent to which array genotyping and imputation can approximate WGS therefore depends on reference panel, genotype array, sample ancestry, and genomic location. Imputation quality by variant or genomic region can be queried with our new tool, RsqBrowser, now deployed on the Michigan Imputation Server.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
15.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35589964

RESUMO

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Assuntos
Tecido Adiposo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/genética , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Humanos , Obesidade , SARS-CoV-2
17.
Commun Biol ; 5(1): 329, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393509

RESUMO

South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Povo Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único
18.
Nat Commun ; 13(1): 1644, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347128

RESUMO

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo
19.
Am J Hum Genet ; 109(1): 66-80, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995504

RESUMO

Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.


Assuntos
Processamento Alternativo , Fatores de Risco Cardiometabólico , Regulação da Expressão Gênica , Locos de Características Quantitativas , Característica Quantitativa Herdável , Gordura Subcutânea/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Biologia Computacional/métodos , Éxons , Finlândia , Genes Reporter , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores X do Fígado/genética , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Anotação de Sequência Molecular , Fenótipo , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNA
20.
Neurogastroenterol Motil ; 34(6): e14236, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34378841

RESUMO

BACKGROUND: Functional dyspepsia (FD) is a common gastrointestinal condition of poorly understood pathophysiology. While symptoms' overlap with other conditions may indicate common pathogenetic mechanisms, genetic predisposition is suspected but has not been adequately investigated. METHODS: Using healthcare, questionnaire, and genetic data from three large population-based biobanks (UK Biobank, EGCUT, and MGI), we surveyed FD comorbidities, heritability, and genetic correlations across a wide spectrum of conditions and traits in 10,078 cases and 351,282 non-FD controls of European ancestry. KEY RESULTS: In UK Biobank, 281 diagnoses were detected at increased prevalence in FD, based on healthcare records. Among these, gastrointestinal conditions (OR = 4.0, p < 1.0 × 10-300 ), anxiety disorders (OR = 2.3, p < 1.4 × 10-27 ), ischemic heart disease (OR = 2.2, p < 2.3 × 10-76 ), and infectious and parasitic diseases (OR = 2.1, p = 1.5 × 10-73 ) showed strongest association with FD. Similar results were obtained in an analysis of self-reported conditions and use of medications from questionnaire data. Based on a genome-wide association meta-analysis of genotypes across all cohorts, FD heritability was estimated close to 5% ( hSNP2  = 0.047, p = 0.014). Genetic correlations indicate FD predisposition is shared with several other diseases and traits (rg  > 0.344), mostly overlapping with those also enriched in FD patients. Suggestive (p < 5.0 × 10-6 ) association with FD risk was detected for 13 loci, with 2 showing nominal replication (p < 0.05) in an independent cohort of 192 FD patients. CONCLUSIONS & INFERENCES: FD has a weak heritable component that shows commonalities with multiple conditions across a wide spectrum of pathophysiological domains. This new knowledge contributes to a better understanding of FD etiology and may have implications for improving its treatment.


Assuntos
Dispepsia , Gastroenteropatias , Cruzamentos Genéticos , Dispepsia/diagnóstico , Dispepsia/epidemiologia , Dispepsia/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...