Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(11): 5670-5681, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021113

RESUMO

Many tissues are composed of layered structures, and a better understanding of the changes in the layered tissue biomechanics can enable advanced guidance and monitoring of therapy. The advent of elastography using longitudinally propagating shear waves (LSWs) has created the prospect of a high-resolution assessment of depth-dependent tissue elasticity. Laser activation of liquid-to-gas phase transition of dye-loaded perfluorocarbon (PFC) nanodroplets (a.k.a., nanobombs) can produce highly localized LSWs. This study aims to leverage the potential of photoactivation of nanobombs to incudce LSWs with very high-frequency content in wave-based optical coherence elastography (OCE) to estimate the elasticity gradient with high resolution. In this work, we used multilayered tissue-mimicking phantoms to demonstrate that highly localized nanobomb (NB)-induced LSWs can discriminate depth-wise tissue elasticity gradients. The results show that the NB-induced LSWs rapidly change speed when transitioning between layers with different mechanical properties, resulting in an elasticity resolution of ∼65 µm. These results show promise for characterizing the elasticity of multilayer tissue with a fine resolution.

2.
Biomed Opt Express ; 11(11): 6659-6673, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282515

RESUMO

Excitation of dye-loaded perfluorocarbon nanoparticles (nanobombs) can generate highly localized axially propagating longitudinal shear waves (LSW) that can be used to quantify tissue mechanical properties without transversal scanning of the imaging beam. In this study, we used repetitive excitations of dodecafluoropentane (C5) and tetradecafluorohexane (C6) nanobombs by a nanosecond-pulsed laser to produce multiple LSWs from a single spot in a phantom. A 1.5 MHz Fourier-domain mode-locked laser in combination with a phase correction algorithm was used to perform elastography. Multiple nanobomb activations were also monitored by detecting photoacoustic signals. Our results demonstrate that C6 nanobombs can be used for repetitive generation of LSW from a single spot for the purpose of material elasticity assessment. This study opens new avenues for continuous quantification of tissue mechanical properties using single delivery of the nanoparticles.

3.
Nature ; 475(7357): 477-80, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796206

RESUMO

Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field lines into the corona. Previous observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s(-1)) to supply the energy flux (100-200 W m(-2)) required to drive the fast solar wind or balance the radiative losses of the quiet corona. Here we report observations of the transition region (between the chromosphere and the corona) and of the corona that reveal how Alfvénic motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s(-1) and periods of the order of 100-500 s throughout the quiescent atmosphere (compatible with recent investigations), and are energetic enough to accelerate the fast solar wind and heat the quiet corona.

4.
Nature ; 472(7342): 197-200, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21490669

RESUMO

Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun's outer atmosphere. They evolve over time, eventually erupting as the dark cores of coronal mass ejections. Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations of high-latitude 'polar crown' prominences within coronal cavities reveal dark, low-density 'bubbles' that undergo Rayleigh-Taylor instabilities to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5-12) × 10(5) kelvin, which is 25-120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity-prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA