Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Synaptic Neurosci ; 13: 740368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658832

RESUMO

Noise-induced hearing loss has gained relevance as one of the most common forms of hearing impairment. The anatomical correlates of hearing loss, principally cell damage and/or death, are relatively well-understood histologically. However, much less is known about the physiological aspects of damaged, surviving cells. Here we addressed the functional consequences of noise exposure on the capacity of inner hair cells (IHCs) to release synaptic vesicles at synapses with spiral ganglion neurons (SGNs). Mice of either sex at postnatal day (P) 15-16 were exposed to 1-12 kHz noise at 120 dB sound pressure level (SPL), for 1 h. Exocytosis was measured by tracking changes in membrane capacitance (ΔCm) from IHCs of the apical cochlea. Upon IHC depolarization to different membrane potentials, ΔC m showed the typical bell-shaped curve that mirrors the voltage dependence of Ca2+ influx, in both exposed and unexposed cells. Surprisingly, from IHCs at 1-day after exposure (d.a.e.), we found potentiation of exocytosis at the peak of the bell-shaped curve. The increase in exocytosis was not accompanied by changes in whole-cell Ca2+ influx, suggesting a modification in coupling between Ca2+ channels and synaptic vesicles. Consistent with this notion, noise exposure also changed the Ca2+-dependence of exocytosis from linear to supralinear. Noise exposure did not cause loss of IHCs, but did result in a small reduction in the number of IHC-SGN synapses at 1-d.a.e. which recovered by 14-d.a.e. In contrast, a strong reduction in auditory brainstem response wave-I amplitude (representing synchronous firing of SGNs) and distortion product otoacoustic emissions (reflecting outer hair cell function) indicated a profound hearing loss at 1- and 14-d.a.e. To determine the role of glutamate release in the noise-induced potentiation of exocytosis, we evaluated vesicular glutamate transporter-3 (Vglut3) knock-out (KO) mice. Unlike WT, IHCs from Vglut3 KO mice showed a noise-induced reduction in ΔC m and Ca2+ influx with no change in the Ca2+-dependence of exocytosis. Together, these results indicate that traumatic noise exposure triggers changes of IHC synaptic function including a Vglut3-dependent potentiation of exocytosis.

2.
Proc Natl Acad Sci U S A ; 117(21): 11811-11819, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393641

RESUMO

"Growing old" is the most common cause of hearing loss. Age-related hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to age-related auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calcium-gated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.


Assuntos
Envelhecimento/fisiologia , Cóclea , Células Ciliadas Auditivas Externas , Presbiacusia , Complexo Olivar Superior , Animais , Cóclea/fisiologia , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Retroalimentação Fisiológica/fisiologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/fisiologia , Camundongos , Emissões Otoacústicas Espontâneas/fisiologia , Presbiacusia/fisiopatologia , Presbiacusia/prevenção & controle , Complexo Olivar Superior/citologia , Complexo Olivar Superior/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(37): 18397-18403, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451634

RESUMO

The perception of sound relies on sensory hair cells in the cochlea that convert the mechanical energy of sound into release of glutamate onto postsynaptic auditory nerve fibers. The hair cell receptor potential regulates the strength of synaptic transmission and is shaped by a variety of voltage-dependent conductances. Among these conductances, the Ca2+- and voltage-activated large conductance Ca2+-activated K+ channel (BK) current is prominent, and in mammalian inner hair cells (IHCs) displays unusual properties. First, BK currents activate at unprecedentedly negative membrane potentials (-60 mV) even in the absence of intracellular Ca2+ elevations. Second, BK channels are positioned in clusters away from the voltage-dependent Ca2+ channels that mediate glutamate release from IHCs. Here, we test the contributions of two recently identified leucine-rich-repeat-containing (LRRC) regulatory γ subunits, LRRC26 and LRRC52, to BK channel function and localization in mouse IHCs. Whereas BK currents and channel localization were unaltered in IHCs from Lrrc26 knockout (KO) mice, BK current activation was shifted more than +200 mV in IHCs from Lrrc52 KO mice. Furthermore, the absence of LRRC52 disrupted BK channel localization in the IHCs. Given that heterologous coexpression of LRRC52 with BK α subunits shifts BK current gating about -90 mV, to account for the profound change in BK activation range caused by removal of LRRC52, we suggest that additional factors may help define the IHC BK gating range. LRRC52, through stabilization of a macromolecular complex, may help retain some other components essential both for activation of BK currents at negative membrane potentials and for appropriate BK channel positioning.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Animais , Cálcio/metabolismo , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transmissão Sináptica/fisiologia , Transcriptoma
4.
J Neurosci ; 39(36): 7037-7048, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31217330

RESUMO

The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Assuntos
Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Núcleo Olivar/fisiologia , Potenciais Sinápticos , Corpo Trapezoide/fisiologia , Animais , Percepção Auditiva , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Feminino , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/fisiologia , Masculino , Camundongos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Núcleo Olivar/crescimento & desenvolvimento , Núcleo Olivar/metabolismo , Receptores Nicotínicos/genética , Corpo Trapezoide/crescimento & desenvolvimento , Corpo Trapezoide/metabolismo
5.
J Neurosci ; 38(34): 7440-7451, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30030403

RESUMO

Cochlear synaptopathy produced by exposure to noise levels that cause only transient auditory threshold elevations is a condition that affects many people and is believed to contribute to poor speech discrimination in noisy environments. These functional deficits in hearing, without changes in sensitivity, have been called hidden hearing loss (HHL). It has been proposed that activity of the medial olivocochlear (MOC) system can ameliorate acoustic trauma effects. Here we explore the role of the MOC system in HHL by comparing the performance of two different mouse models: an α9 nicotinic receptor subunit knock-out (KO; Chrna9 KO), which lacks cholinergic transmission between efferent neurons and hair cells; and a gain-of-function knock-in (KI; Chrna9L9'T KI) carrying an α9 point mutation that leads to enhanced cholinergic activity. Animals of either sex were exposed to sound pressure levels that in wild-type produced transient cochlear threshold shifts and a decrease in neural response amplitudes, together with the loss of ribbon synapses, which is indicative of cochlear synaptopathy. Moreover, a reduction in the number of efferent contacts to outer hair cells was observed. In Chrna9 KO ears, noise exposure produced permanent auditory threshold elevations together with cochlear synaptopathy. In contrast, the Chrna9L9'T KI was completely resistant to the same acoustic exposure protocol. These results show a positive correlation between the degree of HHL prevention and the level of cholinergic activity. Notably, enhancement of the MOC feedback promoted new afferent synapse formation, suggesting that it can trigger cellular and molecular mechanisms to protect and/or repair the inner ear sensory epithelium.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of a variety of perceptual disabilities, including speech-in-noise difficulties, tinnitus, and hyperacusis. Here we show that exposure to noise levels that do not cause permanent threshold elevations or hair cell death can produce a loss of cochlear nerve synapses to inner hair cells as well as degeneration of medial olivocochlear (MOC) terminals contacting the outer hair cells. Enhancement of the MOC reflex can prevent both types of neuropathy, highlighting the potential use of drugs that increase α9α10 nicotinic cholinergic receptor activity as a pharmacotherapeutic strategy to avoid hidden hearing loss.


Assuntos
Limiar Auditivo/fisiologia , Cóclea/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Núcleo Olivar/fisiopatologia , Receptores Nicotínicos/fisiologia , Animais , Vias Auditivas/fisiopatologia , Fibras Colinérgicas/fisiologia , Vias Eferentes/fisiopatologia , Retroalimentação Fisiológica , Mutação com Ganho de Função , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva Provocada por Ruído/etiologia , Humanos , Camundongos , Regeneração Nervosa , Ruído/efeitos adversos , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...