Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 138: 318-327, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929536

RESUMO

Fly ash from municipal solid waste incineration (MSWI-FA) contains leachable heavy metals. In the present study the correlations between heavy metal content, particle size, speciation distribution with respect to water leaching are investigated, using a combination of solid-state bulk analytical techniques, leaching treatments, sequential extractions and thermodynamic geochemical modelling. Among the analyzed heavy metals, Zn and Pb are the most abundant in any grain size class, followed by Cu, Cr, Cd and Ni, with concentration that tends to increase with a decrease of the grain size. The phase composition is constituted of salt (halite, sylvite, anhydrite and syngenite), which provide the main minerals regardless of the particle size class; calcite, quartz and gehlenite occur in comparatively lower amounts, while 50% wt is composed of amorphous fraction. Heavy metal leaching is strongly correlated to speciation distribution, and in particular to the fraction (F1) associated with salt, carbonate and weak surface sorption. Leaching from speciation due to surface complexation on Al/Fe (hydr)oxide becomes relevant at acidic regime. Particle size and heavy metal content, in turn, moderately correlate with leaching. The F1-speciation as a function of particle size does not exhibit a definite trend shared by all heavy metals under investigation. This suggests that i) differences in speciation distribution, rather than bare heavy metal content or particle size, govern leaching from MSWI-FA; ii) F1 can be regarded as a marker of the potential heavy metal leaching; iii) a comparatively modest efficiency in managing MSWI-FA is expected from grain size separation strategies.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Incineração , Metais Pesados/análise , Tamanho da Partícula , Material Particulado , Resíduos Sólidos
2.
Waste Manag ; 84: 340-354, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30691909

RESUMO

The aim of this study is twofold: (i) characterization of the bottom ashes from the Incinerator plant of the city of Turin (northern Italy), in terms of their chemical/phase compositions and capacity to release heavy metals in leachates, as a function of particle size; (ii) investigation of thermal treatments' efficacy to promote inertization of the same bottom ashes, exploring time-temperature ranges with t ≤ 6 h and T ≤ 1000 °C. Special attention is paid to macro-sampling techniques in order to have samples that are representative of the average bottom ashes production. Micro-XRF, ICP-OES, SEM-EDS, Ion Chromatography and X-ray powder diffraction were used to investigate bottom ashes and leachates. Bottom ashes are mainly constituted by an amorphous phase, ∼66-97 wt%, regardless of particle size; the remaining phases are quartz, calcite, Fe-oxides, melilite and other minor crystalline materials. The amorphous phase exhibits a relevant dependence on particle size, and undergoes dissolution in water up to 20 wt%, thus being the most important component in affecting chemical species release. The smaller the bottom ashes' particle size, the more the heavy metals (major species: Zn, Cu, Ti, Pb) and calcium contents increase, whereas silicon's decreases. Electrolytic current observations in combination with phase/chemical composition and metals release as a function of particle size, suggest that bottom ashes partition into two classes, i.e. ≥1 and <1 mm, for inertization purposes. Thermal treatments exhibit partial efficacy to curb heavy metals mobility: whilst they reduce Cu release, they lead to a inverse effect in the case of Cr.


Assuntos
Cinza de Carvão , Metais Pesados , Cidades , Incineração , Itália , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA