Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068796

RESUMO

BACKGROUND: Preclinical studies have firmly established the CD47-signal-regulatory protein (SIRP)α axis as a myeloid immune checkpoint in cancer, and this is corroborated by available evidence from the first clinical studies with CD47 blockers. However, CD47 is ubiquitously expressed and mediates functional interactions with other ligands as well, and therefore targeting of the primarily myeloid cell-restricted inhibitory immunoreceptor SIRPα may represent a better strategy. METHOD: We generated BYON4228, a novel SIRPα-directed antibody. An extensive preclinical characterization was performed, including direct comparisons to previously reported anti-SIRPα antibodies. RESULTS: BYON4228 is an antibody directed against SIRPα that recognizes both allelic variants of SIRPα in the human population, thereby maximizing its potential clinical applicability. Notably, BYON4228 does not recognize the closely related T-cell expressed SIRPγ that mediates interactions with CD47 as well, which are known to be instrumental in T-cell extravasation and activation. BYON4228 binds to the N-terminal Ig-like domain of SIRPα and its epitope largely overlaps with the CD47-binding site. BYON4228 blocks binding of CD47 to SIRPα and inhibits signaling through the CD47-SIRPα axis. Functional studies show that BYON4228 potentiates macrophage-mediated and neutrophil-mediated killing of hematologic and solid cancer cells in vitro in the presence of a variety of tumor-targeting antibodies, including trastuzumab, rituximab, daratumumab and cetuximab. The silenced Fc region of BYON4228 precludes immune cell-mediated elimination of SIRPα-positive myeloid cells, implying anticipated preservation of myeloid immune effector cells in patients. The unique profile of BYON4228 clearly distinguishes it from previously reported antibodies representative of agents in clinical development, which either lack recognition of one of the two SIRPα polymorphic variants (HEFLB), or cross-react with SIRPγ and inhibit CD47-SIRPγ interactions (SIRPAB-11-K322A, 1H9), and/or have functional Fc regions thereby displaying myeloid cell depletion activity (SIRPAB-11-K322A). In vivo, BYON4228 increases the antitumor activity of rituximab in a B-cell Raji xenograft model in human SIRPαBIT transgenic mice. Finally, BYON4228 shows a favorable safety profile in cynomolgus monkeys. CONCLUSIONS: Collectively, this defines BYON4228 as a preclinically highly differentiating pan-allelic SIRPα antibody without T-cell SIRPγ recognition that promotes the destruction of antibody-opsonized cancer cells. Clinical studies are planned to start in 2023.


Assuntos
Antígeno CD47 , Neoplasias , Camundongos , Animais , Humanos , Linfócitos T/metabolismo , Rituximab , Macrófagos , Neoplasias/tratamento farmacológico , Anticorpos Antineoplásicos
2.
J Hematol Oncol ; 15(1): 123, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045419

RESUMO

The vast majority of our knowledge regarding cancer radiobiology and the activation of radioresistance mechanisms emerged from studies using external beam radiation therapy (EBRT). Yet, less is known about the cancer response to internal targeted radionuclide therapy (TRT). Our comparative phosphoproteomics analyzed cellular responses to TRT with lutetium-177-labeled minigastrin analogue [177Lu]Lu-PP-F11N (ß-emitter) and EBRT (É£-rays) in CCKBR-positive cancer cells. Activation of DNA damage response by p53 was induced by both types of radiotherapy, whereas TRT robustly increased activation of signaling pathways including epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs) or integrin receptor. Inhibition of EGFR or integrin signaling sensitized cancer cells to radiolabeled minigastrin. In vivo, EGFR inhibitor erlotinib increased therapeutic response to [177Lu]Lu-PP-F11N and median survival of A431/CCKBR-tumor bearing nude mice. In summary, our study explores a complex scenario of cancer responses to different types of irradiation and pinpoints the radiosensitizing strategy, based on the targeting survival pathways, which are activated by TRT.


Assuntos
Neoplasias , Radioisótopos , Animais , Linhagem Celular Tumoral , Receptores ErbB , Integrinas , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioisótopos/uso terapêutico
3.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357446

RESUMO

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Assuntos
Proteínas de Escherichia coli/metabolismo , Imageamento Tridimensional , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Pressão Osmótica , Fosforilação , Proteólise , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico
4.
Cell Syst ; 9(3): 309-320.e8, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31521608

RESUMO

Proteinaceous inclusions containing alpha-synuclein (α-Syn) have been implicated in neuronal toxicity in Parkinson's disease, but the pathways that modulate toxicity remain enigmatic. Here, we used a targeted proteomic assay to simultaneously measure 269 pathway activation markers and proteins deregulated by α-Syn expression across a panel of 33 Saccharomyces cerevisiae strains that genetically modulate α-Syn toxicity. Applying multidimensional linear regression analysis to these data predicted Pah1, a phosphatase that catalyzes conversion of phosphatidic acid to diacylglycerol at the endoplasmic reticulum membrane, as an effector of rescue. Follow-up studies demonstrated that inhibition of Pah1 activity ameliorates the toxic effects of α-Syn, indicate that the diacylglycerol branch of lipid metabolism could enhance α-Syn neuronal cytotoxicity, and suggest a link between α-Syn toxicity and the biology of lipid droplets.


Assuntos
Galactolipídeos/metabolismo , Neurônios/fisiologia , Doença de Parkinson/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , alfa-Sinucleína/metabolismo , Apoptose , Regulação Fúngica da Expressão Gênica , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Transdução de Sinais , alfa-Sinucleína/genética
5.
Sci Transl Med ; 11(495)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167929

RESUMO

Parkinson's disease (PD) is a neurological disorder characterized by the progressive accumulation of neuronal α-synuclein (αSyn) inclusions called Lewy bodies. It is believed that Lewy bodies spread throughout the nervous system due to the cell-to-cell propagation of αSyn via cycles of secretion and uptake. Here, we investigated the internalization and intracellular accumulation of exogenous αSyn, two key steps of Lewy body pathogenesis, amplification and spreading. We found that stable αSyn fibrils substantially accumulate in different cell lines upon internalization, whereas αSyn monomers, oligomers, and dissociable fibrils do not. Our data indicate that the uptake-mediated accumulation of αSyn in a human-derived neuroblastoma cell line triggered an adaptive response that involved proteins linked to ubiquitin ligases of the S-phase kinase-associated protein 1 (SKP1), cullin-1 (Cul1), and F-box domain-containing protein (SCF) family. We found that SKP1, Cul1, and the F-box/LRR repeat protein 5 (FBXL5) colocalized and physically interacted with internalized αSyn in cultured cells. Moreover, the SCF containing the F-box protein FBXL5 (SCFFBXL5) catalyzed αSyn ubiquitination in reconstitution experiments in vitro using recombinant proteins and in cultured cells. In the human brain, SKP1 and Cul1 were recruited into Lewy bodies from brainstem and neocortex of patients with PD and related neurological disorders. In both transgenic and nontransgenic mice, intracerebral administration of exogenous αSyn fibrils triggered a Lewy body-like pathology, which was amplified by SKP1 or FBXL5 loss of function. Our data thus indicate that SCFFXBL5 regulates αSyn in vivo and that SCF ligases may constitute targets for the treatment of PD and other α-synucleinopathies.


Assuntos
Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Benzotiazóis/metabolismo , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Proteoma/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina/metabolismo
6.
Nat Neurosci ; 22(1): 65-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559480

RESUMO

Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of people with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTLD cases into at least four subtypes, which are correlated with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for biochemical isolation of pathological TDP-43. By combining SarkoSpin with mass spectrometry, we revealed proteins beyond TDP-43 that become abnormally insoluble in a disease subtype-specific manner. We show that pTDP-43 extracted from brain forms stable assemblies of distinct densities and morphologies that are associated with disease subtypes. Importantly, biochemically extracted pTDP-43 assemblies showed differential neurotoxicity and seeding that were correlated with disease duration of FTLD subjects. Our data are consistent with the notion that disease heterogeneity could originate from alternate pathological TDP-43 conformations, which are reminiscent of prion strains.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Agregados Proteicos/fisiologia , Animais , Encéfalo/patologia , Progressão da Doença , Degeneração Lobar Frontotemporal/patologia , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Espectrometria de Massas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação
7.
Sci Rep ; 8(1): 17702, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531974

RESUMO

Post-translational protein modification controls the function of Tau as a scaffold protein linking a variety of molecular partners. This is most studied in the context of microtubules, where Tau regulates their stability as well as the distribution of cellular components to defined compartments. However, Tau is also located in the cell nucleus; and is found to protect DNA. Quantitative assessment of Tau modification in the nucleus when compared to the cytosol may elucidate how subcellular distribution and function of Tau is regulated. We undertook an unbiased approach by combing bimolecular fluorescent complementation and mass spectrometry in order to show that Tau phosphorylation at specific residues is increased in the nucleus of proliferating pluripotent neuronal C17.2 and neuroblastoma SY5Y cells. These findings were validated with the use of nuclear targeted Tau and subcellular fractionation, in particular for the phosphorylation at T181, T212 and S404. We also report that the DNA damaging drug Etoposide increases the translocation of Tau to the nucleus whilst reducing its phosphorylation. We propose that overt phosphorylation of Tau, a hallmark of neurodegenerative disorders defined as tauopathies, may negatively regulate the function of nuclear Tau in protecting against DNA damage.


Assuntos
Núcleo Celular/metabolismo , Fosforilação/fisiologia , Proteínas tau/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/fisiologia , Proliferação de Células/fisiologia , Citosol/metabolismo , Citosol/fisiologia , Humanos , Camundongos , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia
8.
J Proteome Res ; 17(12): 4072-4084, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30137990

RESUMO

The Biology/Disease-driven (B/D) working groups of the Human Proteome Project are alliances of research groups aimed at developing or improving proteomic tools to support specific biological or disease-related research areas. Here, we describe the activities and progress to date of the B/D working group focused on protein aggregation diseases (PADs). PADs are characterized by the intra- or extracellular accumulation of aggregated proteins and include devastating diseases such as Parkinson's and Alzheimer's disease and systemic amyloidosis. The PAD B/D working group aims for the development of proteomic assays for the quantification of aggregation-prone proteins involved in PADs to support basic and clinical research on PADs. Because the proteins in PADs undergo aberrant conformational changes, a goal is to quantitatively resolve altered protein structures and aggregation states in complex biological specimens. We have developed protein-extraction protocols and a set of mass spectrometric (MS) methods that enable the detection and quantification of proteins involved in the systemic and localized amyloidosis and the probing of aberrant protein conformational transitions in cell and tissue extracts. In several studies, we have demonstrated the potential of MS-based proteomics approaches for specific and sensitive clinical diagnoses and for the subtyping of PADs. The developed methods have been detailed in both protocol papers and manuscripts describing applications to facilitate implementation by nonspecialized laboratories, and assay coordinates are shared through public repositories and databases. Clinicians actively involved in the PAD working group support the transfer to clinical practice of the developed methods, such as assays to quantify specific disease-related proteins and their fragments in biofluids and multiplexed MS-based methods for the diagnosis and typing of systemic amyloidosis. We believe that the increasing availability of tools to precisely measure proteins involved in PADs will positively impact research on the molecular bases of these diseases and support early disease diagnosis and a more-confident subtyping.


Assuntos
Objetivos , Agregação Patológica de Proteínas , Proteoma/química , Proteômica/métodos , Logro , Doença de Alzheimer , Amiloidose , Projeto Genoma Humano , Humanos , Doença de Parkinson
9.
J Biol Chem ; 293(15): 5600-5612, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29453283

RESUMO

The stress sensors ATF6, IRE1, and PERK monitor deviations from homeostatic conditions in the endoplasmic reticulum (ER), a protein biogenesis compartment of eukaryotic cells. Their activation elicits unfolded protein responses (UPR) to re-establish proteostasis. UPR have been extensively investigated in cells exposed to chemicals that activate ER stress sensors by perturbing calcium, N-glycans, or redox homeostasis. Cell responses to variations in luminal load with unfolded proteins are, in contrast, poorly characterized. Here, we compared gene and protein expression profiles in HEK293 cells challenged with ER stress-inducing drugs or expressing model polypeptides. Drug titration to limit up-regulation of the endogenous ER stress reporters heat shock protein family A (Hsp70) member 5 (BiP/HSPA5) and homocysteine-inducible ER protein with ubiquitin-like domain 1 (HERP/HERPUD1) to levels comparable with luminal accumulation of unfolded proteins substantially reduced the amplitude of both transcriptional and translational responses. However, these drug-induced changes remained pleiotropic and failed to recapitulate responses to ER load with unfolded proteins. These required unfolded protein association with BiP and induced a much smaller subset of genes participating in a chaperone complex that binds unfolded peptide chains. In conclusion, UPR resulting from ER load with unfolded proteins proceed via a well-defined and fine-tuned pathway, whereas even mild chemical stresses caused by compounds often used to stimulate UPR induce cellular responses largely unrelated to the UPR or ER-mediated protein secretion.


Assuntos
Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
10.
Nat Commun ; 8(1): 1212, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089484

RESUMO

Down syndrome (DS) is mostly caused by a trisomy of the entire Chromosome 21 (Trisomy 21, T21). Here, we use SWATH mass spectrometry to quantify protein abundance and protein turnover in fibroblasts from a monozygotic twin pair discordant for T21, and to profile protein expression in 11 unrelated DS individuals and matched controls. The integration of the steady-state and turnover proteomic data indicates that protein-specific degradation of members of stoichiometric complexes is a major determinant of T21 gene dosage outcome, both within and between individuals. This effect is not apparent from genomic and transcriptomic data. The data also reveal that T21 results in extensive proteome remodeling, affecting proteins encoded by all chromosomes. Finally, we find broad, organelle-specific post-transcriptional effects such as significant downregulation of the mitochondrial proteome contributing to T21 hallmarks. Overall, we provide a valuable proteomic resource to understand the origin of DS phenotypic manifestations.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Proteoma/metabolismo , Proteostase , Trissomia/patologia , Bases de Dados de Proteínas , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Organelas/metabolismo , Proteólise , Proteostase/genética , Transdução de Sinais , Trissomia/genética
11.
Nat Protoc ; 12(11): 2391-2410, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29072706

RESUMO

Protein structural changes induced by external perturbations or internal cues can profoundly influence protein activity and thus modulate cellular physiology. A number of biophysical approaches are available to probe protein structural changes, but these are not applicable to a whole proteome in a biological extract. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a recently developed proteomics approach that enables the identification of protein structural changes directly in their complex biological context on a proteome-wide scale. After perturbations of interest, proteome extracts are subjected to a double-protease digestion step with a nonspecific protease applied under native conditions, followed by complete digestion with the sequence-specific protease trypsin under denaturing conditions. This sequential treatment generates structure-specific peptides amenable to bottom-up MS analysis. Next, a proteomics workflow involving shotgun or targeted MS and label-free quantification is applied to measure structure-dependent proteolytic patterns directly in the proteome extract. Possible applications of LiP-MS include discovery of perturbation-induced protein structural alterations, identification of drug targets, detection of disease-associated protein structural states, and analysis of protein aggregates directly in biological samples. The approach also enables identification of the specific protein regions involved in the structural transition or affected by the binding event. Sample preparation takes approximately 2 d, followed by one to several days of MS and data analysis time, depending on the number of samples analyzed. Scientists with basic biochemistry training can implement the sample preparation steps. MS measurement and data analysis require a background in proteomics.


Assuntos
Proteólise , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores/análise , Misturas Complexas/química , Desenho de Fármacos , Endopeptidase K/química , Ficina/química , Células HeLa , Humanos , Pronase/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma/química , Proteômica/instrumentação , Controle de Qualidade , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Termolisina/química , Tripsina/química
12.
Dev Cell ; 43(2): 141-156.e7, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065306

RESUMO

During interphase, the nuclear envelope (NE) serves as a selective barrier between cytosol and nucleoplasm. When vertebrate cells enter mitosis, the NE is dismantled in the process of nuclear envelope breakdown (NEBD). Disassembly of nuclear pore complexes (NPCs) is a key aspect of NEBD, required for NE permeabilization and formation of a cytoplasmic mitotic spindle. Here, we show that both CDK1 and polo-like kinase 1 (PLK1) support mitotic NPC disintegration by hyperphosphorylation of Nup98, the gatekeeper nucleoporin, and Nup53, a central nucleoporin linking the inner NPC scaffold to the pore membrane. Multisite phosphorylation of Nup53 critically contributes to its liberation from its partner nucleoporins, including the pore membrane protein NDC1. Initial steps of NPC disassembly in semi-permeabilized cells can be reconstituted by a cocktail of mitotic kinases including cyclinB-CDK1, NIMA, and PLK1, suggesting that the unzipping of nucleoporin interactions by protein phosphorylation is an important principle underlying mitotic NE permeabilization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Mitose/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Quinase CDC2 , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Células HeLa , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
13.
Mol Syst Biol ; 13(10): 949, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061669

RESUMO

Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome-wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis Relative quantification of the changes in the lysine acetylation levels was determined on a proteome-wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1-like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar-localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss-of-function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low-light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona Desacetilases/metabolismo , Lisina/química , Proteômica/métodos , Acetilação , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Inibidores de Histona Desacetilases/farmacologia , Histonas/química , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Peptídeos Cíclicos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional
14.
Methods Mol Biol ; 1653: 65-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28822126

RESUMO

Photorespiratory enzymes in different cellular compartments have been reported to be posttranslational modified by phosphorylation, disulfide formation, S-nitrosylation, glutathionylation, and lysine acetylation. However, not much is known yet about the function of these modifications to regulate the activities, localizations, or interactions of the proteins in this metabolic pathway. Hence, it will be of great importance to study these modifications and their temporal and conditional occurrence in more detail. Here, we focus on the analysis of lysine acetylation as a relatively newly discovered modification on plant metabolic enzymes. The acetylation of lysine residues within proteins is a highly conserved and reversible posttranslational modification which occurs in all living organisms. First discovered on histones and implied in the regulation of gene expression, lysine acetylation also occurs on a diverse set of cellular proteins in different subcellular compartments and is particularly abundant on metabolic enzymes. Upon lysine acetylation, the function of proteins can be modulated due to the loss of the positive charge of the lysine residue. Lysine acetylation was also discovered on proteins involved in photosynthesis and novel tools are needed to study the regulation of this modification in dependence on the environmental conditions, tissues, or plant genotype. This chapter describes a method for the identification and relative quantification of lysine-acetylated proteins in plant tissues using a dimethyl labeling technique combined with an anti-acetyl lysine antibody enrichment strategy. Here, we describe the protein purification, labeling of trypsinated peptides, as well as immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) data acquisition and analysis.


Assuntos
Arabidopsis/metabolismo , Lisina/metabolismo , Peptídeos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Processamento de Proteína Pós-Traducional , Coloração e Rotulagem/métodos , Acetilação , Anticorpos/química , Arabidopsis/química , Arabidopsis/genética , Cromatografia Líquida/métodos , Oryza/química , Oryza/genética , Oryza/metabolismo , Oxirredução , Consumo de Oxigênio/fisiologia , Pisum sativum/química , Pisum sativum/genética , Pisum sativum/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem/métodos , Triticum/química , Triticum/genética , Triticum/metabolismo
15.
Science ; 355(6327)2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28232526

RESUMO

Temperature-induced cell death is thought to be due to protein denaturation, but the determinants of thermal sensitivity of proteomes remain largely uncharacterized. We developed a structural proteomic strategy to measure protein thermostability on a proteome-wide scale and with domain-level resolution. We applied it to Escherichia coli, Saccharomyces cerevisiae, Thermus thermophilus, and human cells, yielding thermostability data for more than 8000 proteins. Our results (i) indicate that temperature-induced cellular collapse is due to the loss of a subset of proteins with key functions, (ii) shed light on the evolutionary conservation of protein and domain stability, and (iii) suggest that natively disordered proteins in a cell are less prevalent than predicted and (iv) that highly expressed proteins are stable because they are designed to tolerate translational errors that would lead to the accumulation of toxic misfolded species.


Assuntos
Desdobramento de Proteína , Proteínas/química , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Espectrometria de Massas , Desnaturação Proteica , Mapas de Interação de Proteínas , Estabilidade Proteica , Proteólise , Proteoma/química , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
16.
Curr Opin Biotechnol ; 34: 162-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25636126

RESUMO

Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies.


Assuntos
Proteoma/análise , Proteômica/métodos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Humanos , Fosforilação , Proteólise
17.
Nat Biotechnol ; 32(10): 1036-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25218519

RESUMO

Changes in protein conformation can affect protein function, but methods to probe these structural changes on a global scale in cells have been lacking. To enable large-scale analyses of protein conformational changes directly in their biological matrices, we present a method that couples limited proteolysis with a targeted proteomics workflow. Using our method, we assessed the structural features of more than 1,000 yeast proteins simultaneously and detected altered conformations for ~300 proteins upon a change of nutrients. We find that some branches of carbon metabolism are transcriptionally regulated whereas others are regulated by enzyme conformational changes. We detect structural changes in aggregation-prone proteins and show the functional relevance of one of these proteins to the metabolic switch. This approach enables probing of both subtle and pronounced structural changes of proteins on a large scale.


Assuntos
Proteínas/análise , Proteínas/química , Proteoma/análise , Proteoma/química , Proteômica/métodos , Sequência de Aminoácidos , Amiloide , Frutosedifosfatos , Espectrometria de Massas , Dados de Sequência Molecular , Fragmentos de Peptídeos , Príons , Conformação Proteica , Proteólise , Tripsina
18.
Nat Methods ; 11(10): 1045-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194849

RESUMO

We describe a proteomic screening approach based on the concept of sentinel proteins, biological markers whose change in abundance characterizes the activation state of a given cellular process. Our sentinel assay simultaneously probed 188 biological processes in Saccharomyces cerevisiae exposed to a set of environmental perturbations. The approach can be applied to analyze responses to large sets of uncharacterized perturbations in high throughput.


Assuntos
Biologia Computacional/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas/métodos , Humanos , Espectrometria de Massas/métodos , Peptídeos/química , Fosfoproteínas/química , Mapeamento de Interação de Proteínas , Reprodutibilidade dos Testes , Transcriptoma
19.
Mitochondrion ; 19 Pt B: 252-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24727099

RESUMO

Posttranslational modifications are essential regulators of protein functions as they can modify enzyme activities or protein-molecule interactions by changing the charge state or chemical properties of their target amino acid. The acetyl moiety of the central energy metabolite acetyl-CoA can be transferred to the ε-amino group of lysine, a process known as lysine acetylation which is implicated in the regulation of key metabolic enzymes in various organisms. Since plant mitochondria are of great importance for plant growth and development and as they house key enzymes of oxidative phosphorylation and photorespiration, it is essential to investigate the occurrence of lysine acetylation in this organelle. Here we characterised the plant mitochondrial acetylome of Arabidopsis mitochondria by LC-MS/MS analysis. In total 120 lysine-acetylated mitochondrial proteins containing 243 acetylated sites were identified. These proteins were mapped into functional categories showing that many proteins with essential functions from the tricaboxylic cycle and the respiratory chain are lysine-acetylated, as well as proteins involved in photorespiration, amino acid and protein metabolism, and redox regulation. Immuno-detection of mitochondrial proteins revealed that many lysine-acetylated proteins reside in native protein complexes. Furthermore, in vitro experiments demonstrated that lysine acetylation can occur non-enzymatically in Arabidopsis mitochondria at physiological matrix pH.


Assuntos
Acetilcoenzima A/metabolismo , Arabidopsis/química , Lisina/metabolismo , Mitocôndrias/química , Proteínas Mitocondriais/análise , Proteínas de Plantas/análise , Processamento de Proteína Pós-Traducional , Acetilação , Arabidopsis/metabolismo , Cromatografia Líquida , Mitocôndrias/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem
20.
Plant Physiol ; 164(3): 1401-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424322

RESUMO

The posttranslational regulation of proteins by lysine (Lys) acetylation has recently emerged to occur not only on histones, but also on organellar proteins in plants and animals. In particular, the catalytic activities of metabolic enzymes have been shown to be regulated by Lys acetylation. The Arabidopsis (Arabidopsis thaliana) genome encodes two predicted sirtuin-type Lys deacetylases, of which only Silent Information Regulator2 homolog (SRT2) contains a predicted presequence for mitochondrial targeting. Here, we have investigated the function of SRT2 in Arabidopsis. We demonstrate that SRT2 functions as a Lys deacetylase in vitro and in vivo. We show that SRT2 resides predominantly at the inner mitochondrial membrane and interacts with a small number of protein complexes mainly involved in energy metabolism and metabolite transport. Several of these protein complexes, such as the ATP synthase and the ATP/ADP carriers, show an increase in Lys acetylation in srt2 loss-of-function mutants. The srt2 plants display no growth phenotype but rather a metabolic phenotype with altered levels in sugars, amino acids, and ADP contents. Furthermore, coupling of respiration to ATP synthesis is decreased in these lines, while the ADP uptake into mitochondria is significantly increased. Our results indicate that SRT2 is important in fine-tuning mitochondrial energy metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metabolismo Energético , Histona Desacetilases/metabolismo , Lisina/metabolismo , Mitocôndrias/metabolismo , Sirtuínas/metabolismo , Acetilação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Isótopos de Carbono , Respiração Celular , Técnicas de Inativação de Genes , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , NAD/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fenótipo , Ligação Proteica , Transporte Proteico/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...