Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 55(Pt 3): 621-625, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35719306

RESUMO

Electronic or catalytic properties can be modified at the nanoscale level. Engineering efficient and specific nanomaterials requires the ability to study their complex structure-property relationships. Here, Bragg coherent diffraction imaging was used to measure the three-dimensional shape and strain of platinum nanoparticles with a diameter smaller than 30 nm, i.e. significantly smaller than any previous study. This was made possible by the realization of the Extremely Brilliant Source of ESRF, The European Synchrotron. This work demonstrates the feasibility of imaging the complex structure of very small particles in three dimensions and paves the way towards the observation of realistic catalytic particles.

2.
Rev Sci Instrum ; 88(9): 093902, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964168

RESUMO

A reactor cell for in situ studies of individual catalyst nanoparticles or surfaces by nano-focused (coherent) x-ray diffraction has been developed. Catalytic reactions can be studied in flow mode in a pressure range of 10-2-103 mbar and temperatures up to 900 °C. This instrument bridges the pressure and materials gap at the same time within one experimental setup. It allows us to probe in situ the structure (e.g., shape, size, strain, faceting, composition, and defects) of individual nanoparticles using a nano-focused x-ray beam. Here, the setup was used to observe strain and facet evolution of individual model Pt catalysts during in situ experiments. It can be used for heating other (non-catalytically active) nanoparticles (e.g., nanowires) in inert or reactive gas atmospheres or vacuum as well.

3.
J Phys Chem B ; 120(24): 5505-12, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27231751

RESUMO

The structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-stabilized colloidal tetracosane emulsions was investigated by photon correlation spectroscopy and small-angle X-ray and neutron scattering, using emulsions with different neutron scattering contrasts. Special emphasis was placed on the structure of the DMPC stabilizer layer covering the emulsion droplets. A monolayer, structurally similar to a half DMPC bilayer, with a thickness of 16 Å is found. Thereby, the phosphocholine headgroups arrange flat at the oil-water interface. A deep penetration of the tetracosane oil into the stabilizer layer can be ruled out.

4.
J Phys Chem B ; 120(24): 5513-26, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27232983

RESUMO

Using photon correlation spectroscopy, transmission electron microscopy, microcalorimetry, wide-angle X-ray scattering (WAXS), and small-angle X-ray and neutron scattering (SAXS, SANS), the structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-stabilized colloidal tetracosane suspensions was studied from the molecular level to the microscopic scale as a function of the temperature. The platelike nanocrystals exhibit for tetracosane an unusual orthorhombic low-temperature crystal structure. The corresponding WAXS pattern can be reproduced with a predicted orthorhombic unit cell (space group Pca21), which usually occurs only for much longer even-numbered n-alkanes. Special emphasis was placed on the structure of the DMPC stabilizer layer covering the nanocrystals. Their structure was investigated by SAXS and SANS, using suspensions with different neutron scattering contrasts. As for the emulsions in Part I , the crystallized nanoparticles are covered by a DMPC monolayer. Their significant smaller thickness of 10.5 Å (for the emulsions in Part I : 16 Å) could be related to a more tilted orientation of the DMPC molecules to cover the expanded surface of the crystallized nanoparticles.

5.
J Mech Behav Biomed Mater ; 28: 366-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23707600

RESUMO

The inelastic deformability of the mineralised matrix in bones is critical to their high toughness, but the nanoscale mechanisms are incompletely understood. Antler is a tough bone type, with a nanostructure composed of mineralised collagen fibrils ∼100nm diameter. We track the fibrillar deformation of antler tissue during cyclic loading using in situ synchrotron small-angle X-ray diffraction (SAXD), finding that residual strain remains in the fibrils after the load was removed. During repeated unloading/reloading cycles, the fibril strain shows minimal hysteresis when plotted as a function of tissue strain, indicating that permanent plastic strain accumulates inside the fibril. We model the tensile response of the mineralised collagen fibril by a two - level staggered model - including both elastic - and inelastic regimes - with debonding between mineral and collagen within fibrils triggering macroscopic inelasticity. In the model, the subsequent frictional sliding at intrafibrillar mineral/collagen interfaces accounts for subsequent inelastic deformation of the tissue in tension. The model is compared to experimental measurements of fibrillar and mineral platelet strain during tensile deformation, measured by in situ synchrotron SAXD and wide-angle X-ray diffraction (WAXD) respectively, as well as macroscopic tissue stress and strain. By fitting the model predictions to experimentally observed parameters like the yield point, elastic modulus and post-yield slope, extremely good agreement is found between the model and experimental data at both the macro- and at the nanoscale. Our results provide strong evidence that intrafibrillar sliding between mineral and collagen leads to permanent plastic strain at both the fibril and the tissue level, and that the energy thus dissipated is a significant factor behind the high toughness of antler bone.


Assuntos
Chifres de Veado , Osso e Ossos/metabolismo , Colágeno/metabolismo , Fenômenos Mecânicos , Minerais/metabolismo , Animais , Fenômenos Biomecânicos , Cervos , Módulo de Elasticidade
6.
Nanotechnology ; 21(15): 155702, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20332555

RESUMO

Nanochannels and nanowires with diameters ranging from 30 to 400 nm were produced by etching ion tracks in thin polyarylate and polycarbonate foils. The shape and the size distribution of dry and wet nanochannels, as well as of nanowires grown therein, were examined by small-angle x-ray scattering. The x-ray intensity as a function of the scattering vector exhibits pronounced oscillations showing that both the channels and the wires have a highly cylindrical geometry and a very narrow size distribution. UV exposure before chemical etching significantly improves the monodispersity of the nanopores. For fixed etching conditions, the scattering patterns provide evidence that the diameter of dry and water-filled channels as well as for embedded nanowires are identical, demonstrating that the pores in the polymer are completely filled.

7.
J Struct Biol ; 169(2): 183-91, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19822213

RESUMO

Tendon is a hydrated multi-level fibre composite, in which time-dependent behaviour is well established. Studies indicate significant stress relaxation, considered important for optimising tissue stiffness. However, whilst this behaviour is well documented, the mechanisms associated with the response are largely unknown. This study investigates the sub-structural mechanisms occurring during stress relaxation at both the macro (fibre) and nano (fibril) levels of the tendon hierarchy. Stress relaxation followed a two-stage exponential behaviour, during which structural changes were visible at the fibre and fibril levels. Fibril relaxation and fibre sliding showed a double exponential response, while fibre sliding was clearly the largest contributor to relaxation. The amount of stress relaxation and sub-structural reorganisation increased with increasing load increments, but fibre sliding was consistently the largest contributor to stress relaxation. A simple model of tendon viscoelasticity at the fibril and fibre levels has been developed, capturing this behaviour by serially coupling a Voigt element (collagen fibril), with two Maxwell elements (non-collagenous matrix between fibrils and fibres). This multi-level analysis provides a first step towards understanding how sub-structural interactions contribute to viscoelastic behaviour. It indicates that nano- and micro-scale shearing are significant dissipative mechanisms, and the kinetics of relaxation follows a two-stage exponential decay, well fitted by serially coupled viscoelastic elements.


Assuntos
Colágeno/fisiologia , Tendões/química , Laranja de Acridina , Animais , Fenômenos Biomecânicos , Cinética , Masculino , Ratos , Ratos Wistar , Estresse Mecânico , Substâncias Viscoelásticas , Difração de Raios X
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 1): 031203, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14524754

RESUMO

Concentrated surfactant stabilized cobalt ferrofluids up to 6 vol % Co have been studied by small-angle scattering using polarized neutrons and synchrotron x rays. The combination of these techniques allowed the magnetic and nuclear form factors to be reliably separated from the structure factors. Above 1 vol % Co, inter particle interactions are induced by an applied external magnetic field that gives rise to pseudocrystalline ordering of cobalt core-shell particles. Particles are arranged in hexagonal planes, with the magnetic moments aligned parallel to the [110] direction. Two types of equivalent textures were found to be present simultaneously, corresponding to a stacking of the hexagonal planes in horizontal and vertical direction. The in-plane nearest-neighbor distance is almost independent of the concentration and temperatures, whereas the distance between the neighboring planes, c, strongly varies from sample to sample. In addition, segments of chains of particles with parallel moments are aligned along the magnetic field and frozen-in when the carrier liquid is solidified. The field induced pseudocrystalline lamellar hexagonal particle arrangement, observed experimentally in colloidal magnetic liquids, confirms predictions from molecular-dynamics and Monte Carlo simulations.

9.
Biophys J ; 77(6): 3197-207, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10585941

RESUMO

When isometrically contracting muscles are subjected to a quick release followed by a shortening ramp of appropriate speed (V(o)), tension decays from its value at the isometric plateau (P(o)) to <0. 05 P(o) with the same time course as the quick part of the release; thereafter, tension remains at a negligible level for the duration of the shortening ramp. X-ray diffraction data obtained under these conditions provide evidence that 1) at V(o) very few heads form an actomyosin complex, while the number of heads doing so at P(o) is significant; 2) relative to rest the actin filament at V(o) is approximately 0.12% shorter and more twisted, while it is approximately 0.3% longer and less twisted at P(o); and 3) the myosin heads attaching to actin during force development do so against a thin filament compliance of at least 0.646 +/- 0.046% nm per P(o).


Assuntos
Actinas/química , Actinas/fisiologia , Contração Isométrica/fisiologia , Actomiosina/química , Actomiosina/fisiologia , Animais , Fenômenos Biofísicos , Biofísica , Técnicas In Vitro , Modelos Biológicos , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Miosinas/química , Miosinas/fisiologia , Estrutura Secundária de Proteína , Rana pipiens , Difração de Raios X
10.
J Physiol ; 514 ( Pt 2): 305-12, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9852315

RESUMO

1. Two-dimensional X-ray diffraction patterns were recorded at the European Synchrotron Radiation Facility from central segments of intact single muscle fibres of Rana temporaria with 5 ms time resolution during the development of isometric contraction. Shortening at ca 0.8 times the maximum velocity was also imposed at the isometric tetanus plateau. 2. The first myosin-based layer line (ML1) and the second myosin-based meridional reflection (M2), which are both strong in resting muscle, were completely abolished at the plateau of the isometric tetanus. The third myosin-based meridional reflection (M3), arising from the axial repeat of the myosin heads along the filaments, remained intense but its spacing changed from 14.34 to 14.56 nm. The intensity change of the M3 reflection, IM3, could be explained as the sum of two components, I14.34 and I14.56, arising from myosin head conformations characteristic of rest and isometric contraction, respectively. 3. The amplitudes (A) of the X-ray reflections, which are proportional to the fraction of myosin heads in each conformation, changed with half-times that were similar to that of isometric force development, which was 33.5 +/- 2. 0 ms (mean +/- s.d., 224 tetani from three fibres, 4 C), measured from the end of the latent period. We conclude that the myosin head conformation changes synchronously with force development, at least within the 5 ms time resolution of these measurements. 4. The changes in the X-ray reflections during rapid shortening have two temporal components. The rapid decrease in intensity of the 14.56 nm reflection at the start of shortening is likely to be due to tilting of myosin heads attached to actin. The slower changes in the other reflections were consistent with a return to the resting conformation of the myosin heads that was about 60 % complete after shortening of 70 nm per half-sarcomere.


Assuntos
Contração Isométrica/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Miosinas/química , Miosinas/fisiologia , Conformação Proteica , Animais , Técnicas In Vitro , Rana temporaria , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Fatores de Tempo , Difração de Raios X
11.
Adv Exp Med Biol ; 453: 265-70, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9889838

RESUMO

Time resolved X-ray diffraction experiments in single muscle fibres of the frog at 2.15 microns sarcomere length and 4 degrees C were performed at ID2 (SAXS), ESRF, Grenoble (France) to investigate the structural aspects of cross-bridge action during the development of the isometric tetanic tension (T0). Changes in the low angle myosin-based reflections were measured with 5 ms time resolution by signal averaging data collected with a 10 m camera length and a 2D gas-filled detector. Upon activation the intensity of the first order myosin layer line reflection, I(M1), and the intensity of the second order meridional reflection, I(M2), reduced practically to zero with a half-time which leads the tension rise by 15-20 ms. The complex changes of the intensity of the third order myosin meridional reflection, I(M3), and the increase of its axial spacing from 14.34 nm (at rest) to 14.57 nm (at T0) could be analysed by assuming that they were the result of the combination of the time dependent modulation in intensity of two closely spaced periodicities, one at 14.34 nm, characteristics of the myosin molecule at rest and the other at 14.57 nm, assumed by the myosin as a consequence of the activation and force production. I(14.34) drops monotonically in advance to isometric tension development with a half-time similar to that of I(M1) and I(M2), while I(14.57) rises from zero to a maximum in parallel with tension.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/química , Músculo Esquelético/química , Miosinas/química , Miosinas/fisiologia , Animais , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Rana temporaria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...