Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38013689

RESUMO

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

3.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939223

RESUMO

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Assuntos
Ácido Peracético , Peróxidos , Ligantes , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro , Heme/química , Tirosina , Carbono
4.
IUCrJ ; 10(Pt 6): 642-655, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870936

RESUMO

The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.

5.
Angew Chem Int Ed Engl ; 62(49): e202313880, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37871234

RESUMO

Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.

6.
Photosynth Res ; 158(2): 91-107, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37266800

RESUMO

One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).


Assuntos
Complexo de Proteína do Fotossistema II , Prótons , Complexo de Proteína do Fotossistema II/metabolismo , Água/metabolismo , Microscopia Crioeletrônica , Oxirredução
7.
Nature ; 617(7961): 629-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138085

RESUMO

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Assuntos
Oxigênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Água/química , Água/metabolismo , Manganês/química , Manganês/metabolismo , Cálcio/química , Cálcio/metabolismo , Peróxidos/metabolismo
8.
FEBS Lett ; 597(1): 30-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310373

RESUMO

Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn4 CaO5 complex, in the intermediate Si (i = 0-4)-states of the Kok cycle, obtained using XFELs.


Assuntos
Fotossíntese , Água , Água/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Lasers , Oxigênio/química
9.
J Inorg Biochem ; 230: 111768, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202981

RESUMO

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Assuntos
Lasers , Metano , Cristalografia por Raios X , Metano/química , Oxirredução , Oxirredutases , Temperatura
10.
Struct Dyn ; 8(6): 064302, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34849380

RESUMO

In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kß x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kß XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kß1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.

11.
Nat Commun ; 12(1): 6531, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764256

RESUMO

Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Ligação de Hidrogênio , Complexo de Proteína do Fotossistema II/genética , Prótons , Água
12.
Sci Rep ; 11(1): 21787, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750381

RESUMO

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Assuntos
Complexo de Proteína do Fotossistema I/química , Vitamina K 1/química , Cristalografia por Raios X , Fotossíntese , Estrutura Terciária de Proteína , Temperatura , Thermosynechococcus
13.
Nat Chem ; 13(12): 1228-1234, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635813

RESUMO

Molybdenum nitrogenase catalyses the reduction of N2 to NH3 at its cofactor, an [(R-homocitrate)MoFe7S9C] cluster synthesized via the formation of a [Fe8S9C] L-cluster prior to the insertion of molybdenum and homocitrate. We have previously identified a [Fe8S8C] L*-cluster, which is homologous to the core structure of the L-cluster but lacks the 'ninth sulfur' in the belt region. However, direct evidence and mechanistic details of the L*- to L-cluster conversion upon 'ninth sulfur' insertion remain elusive. Here we trace the 'ninth sulfur' insertion using SeO32- and TeO32- as 'labelled' SO32-. Biochemical, electron paramagnetic resonance and X-ray absorption spectroscopy/extended X-ray absorption fine structure studies suggest a role of the 'ninth sulfur' in cluster transfer during cofactor biosynthesis while revealing the incorporation of Se2-- and Te2--like species into the L-cluster. Density functional theory calculations further point to a plausible mechanism involving in situ reduction of SO32- to S2-, thereby suggesting the utility of this reaction to label the catalytically important belt region for mechanistic investigations of nitrogenase.


Assuntos
Coenzimas/química , Proteínas Ferro-Enxofre/química , Nitrogenase/química , Ácido Selenioso/química , Enxofre/química , Telúrio/química , Proteínas Arqueais/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Methanosarcina/enzimologia , Modelos Químicos , Espectroscopia por Absorção de Raios X
14.
Nat Commun ; 12(1): 4461, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294694

RESUMO

Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.


Assuntos
Cristalografia por Raios X/métodos , Enzimas/química , Enzimas/metabolismo , Animais , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Galinhas , Cristalografia por Raios X/instrumentação , Desenho de Equipamento , Modelos Moleculares , Muramidase/química , Muramidase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo
15.
J Am Chem Soc ; 142(44): 18795-18813, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976708

RESUMO

Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(µ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron µ-carbyne complex (P6ArC)Fe2(µ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(µ-C)(µ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the µ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(µ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(µ-H)]+1 and [(P6ArC)Fe2(µ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.


Assuntos
Carbamatos/química , Complexos de Coordenação/química , Ferro/química , Domínio Catalítico , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Conformação Molecular , Nitrogenase/química , Nitrogenase/metabolismo , Oxirredução , Espectroscopia de Mossbauer
16.
J Am Chem Soc ; 142(33): 14249-14266, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32683863

RESUMO

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.


Assuntos
Oxigenases/química , Temperatura , Methylosinus trichosporium/enzimologia , Modelos Moleculares , Oxirredução , Oxigenases/metabolismo , Solubilidade , Raios X
17.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434915

RESUMO

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Magnésio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/química , Quinonas/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...