Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015641

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in the development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health, and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from patients with PAH. Endothelial haploinsufficiency of RAB7 caused spontaneous pulmonary hypertension (PH) in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA-Seq, and RAB7-silenced ECs showed impaired angiogenesis and expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, suggesting inhibition of autophagy at the predegradation level. Furthermore, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in rats with chronic hypoxia/SU5416. In conclusion, we demonstrate for the first time to our knowledge the fundamental impairment of EC function by loss of RAB7, causing PH, and show RAB7 activation to be a potential therapeutic strategy in a preclinical model of PH.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Camundongos , Ratos , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo
2.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790328

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and potentially a rapidly fatal disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PA) leading to increased pulmonary vascular resistance and right heart failure. Central to the remodeling process is a switch of the smooth muscle cells in small PAs (PASMC) to a proliferative, apoptosis-resistant phenotype. There is reason to suspect that the plasminogen activator system may play an important role in the remodeling program in PAH based on its roles in vascular post-injury restenosis, fibrosis, angiogenesis and tumorigenesis. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of the plasminogen activators - urokinase-type and tissue-type (uPA and tPA, respectively). Immunohisto- chemical and immunoblot analyses revealed that PAI-1 was deficient in smooth muscle areas of small remodeled PAs and early-passage PASMC from subjects with PAH compared to non-PAH controls. PAI1-/- male and female mice developed spontaneous pulmonary vascular remodeling and pulmonary hypertension (PH) as evidenced by significant increase in PA medial thickness, systolic right ventricular pressure, and right ventricular hypertrophy. Lastly, the uPA inhibitors upamostat (WX-671) and amiloride analog BB2-30F down-regulated mTORC1 and SMAD3, restored PAI-1 levels, reduced proliferation, and induced apoptosis in human PAH PASMC. We examined the effect of inhibition of uPA catalytic activity by BB2-30F on the development of SU5416/Hypoxia (SuHx)-induced PH in mice. Vehicletreated SuHx-exposed mice had up-regulated mTORC1 in small PAs, developed pulmonary vascular remodeling and PH, as evidenced by significant increase of PA MT, sRVP, RV hypertrophy, and a significant decrease in the pulmonary artery acceleration time/pulmonary ejection time (PAAT/PET) ratio compared to age- and sex-matched normoxia controls, whereas BB2-30F-treated group was protected from all these pathological changes. Taken together, our data strongly suggest that PAI-1 down- regulation in PASMC from human PAH lungs promotes PASMC hyper-proliferation, remodeling, and spontaneous PH due to unopposed uPA activation. Further studies are needed to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate the progression and/or reverse pulmonary vascular remodeling and PH.

3.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778418

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from PAH patients. Endothelial haploinsufficiency of RAB7 caused spontaneous PH in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA sequencing and RAB7 silenced ECs showed impaired angiogenesis, expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, which suggests inhibition of autophagy at the pre-degradation level. Further, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in chronic hypoxia/SU5416 rats. In conclusion, we demonstrate here for the first time the fundamental impairment of EC function by loss of RAB7 that leads to PH and show RAB7 activation as a potential therapeutic strategy in a preclinical model of PH.

4.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747676

RESUMO

Cardiovascular sequelae of severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) disease 2019 (COVID-19) contribute to the complications of the disease. One potential complication is lung vascular remodeling, but the exact cause is still unknown. We hypothesized that endothelial TLR3 insufficiency contributes to lung vascular remodeling induced by SARS-CoV-2. In the lungs of COVID-19 patients and SARS-CoV-2 infected Syrian hamsters, we discovered thickening of the pulmonary artery media and microvascular rarefaction, which were associated with decreased TLR3 expression in lung tissue and pulmonary artery endothelial cells (ECs). In vitro , SARS-CoV-2 infection reduced endothelial TLR3 expression. Following infection with mouse-adapted (MA) SARS-CoV-2, TLR3 knockout mice displayed heightened pulmonary artery remodeling and endothelial apoptosis. Treatment with the TLR3 agonist polyinosinic:polycytidylic acid reduced lung tissue damage, lung vascular remodeling, and endothelial apoptosis associated with MA SARS-CoV-2 infection. In conclusion, repression of endothelial TLR3 is a potential mechanism of SARS-CoV-2 infection associated lung vascular remodeling and enhancing TLR3 signaling is a potential strategy for treatment.

5.
iScience ; 26(2): 105935, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36685041

RESUMO

Pulmonary arterial hypertension (PAH) features pathogenic and abnormal endothelial cells (ECs), and one potential origin is clonal selection. We studied the role of p53 and toll-like receptor 3 (TLR3) in clonal expansion and pulmonary hypertension (PH) via regulation of bone morphogenetic protein (BMPR2) signaling. ECs of PAH patients had reduced p53 expression. EC-specific p53 knockout exaggerated PH, and clonal expansion reduced p53 and TLR3 expression in rat lung CD117+ ECs. Reduced p53 degradation (Nutlin 3a) abolished clonal EC expansion, induced TLR3 and BMPR2, and ameliorated PH. Polyinosinic/polycytidylic acid [Poly(I:C)] increased BMPR2 signaling in ECs via enhanced binding of interferon regulatory factor-3 (IRF3) to the BMPR2 promoter and reduced PH in p53-/- mice but not in mice with impaired TLR3 downstream signaling. Our data show that a p53/TLR3/IRF3 axis regulates BMPR2 expression and signaling in ECs. This link can be exploited for therapy of PH.

6.
Pulm Circ ; 12(4): e12156, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36438452

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-ß5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-ß5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-ß5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανß5 in vitro partially blocked transforming growth factor (TGF)-ß1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανß5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-ß1. In vivo, blocking of integrin-ανß5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανß5 in lung endothelial survival and migration, but also a partial contribution to TGF-ß1-induced EnMT gene expression. Our results suggest that integrin-ανß5 is required for physiologic function of ECs and lung vascular homeostasis.

7.
PLoS One ; 11(3): e0151574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978070

RESUMO

Although multiple lines of evidence have indicated that Arabidopsis thaliana Tandem CCCH Zinc Finger proteins, AtTZF4, 5 and 6 are involved in ABA, GA and phytochrome mediated seed germination responses, the interacting proteins involved in these processes are unknown. Using yeast two-hybrid screens, we have identified 35 putative AtTZF5 interacting protein partners. Among them, Mediator of ABA-Regulated Dormancy 1 (MARD1) is highly expressed in seeds and involved in ABA signal transduction, while Responsive to Dehydration 21A (RD21A) is a well-documented stress responsive protein. Co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays were used to confirm that AtTZF5 can interact with MARD1 and RD21A in plant cells, and the interaction is mediated through TZF motif. In addition, AtTZF4 and 6 could also interact with MARD1 and RD21A in Y-2-H and BiFC assay, respectively. The protein-protein interactions apparently take place in processing bodies (PBs) and stress granules (SGs), because AtTZF5, MARD1 and RD21A could interact and co-localize with each other and they all can co-localize with the same PB and SG markers in plant cells.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Cisteína Proteases/metabolismo , Desidratação/fisiopatologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/ultraestrutura , Secas , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos/genética , Imunoprecipitação , Microscopia de Fluorescência , Organelas/fisiologia , Fragmentos de Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Processamento Pós-Transcricional do RNA , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Dedos de Zinco
8.
Plant Cell Physiol ; 55(8): 1367-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850834

RESUMO

Cysteine3Histidine (CCCH)-type zinc finger proteins comprise a large family that is well conserved across eukaryotes. Among them, tandem CCCH zinc finger proteins (TZFs) play critical roles in mRNA metabolism in animals and yeast. While there are only three TZF members in humans, a much higher number of TZFs has been found in many plant species. Notably, plant TZFs are over-represented by a class of proteins containing a unique TZF domain preceded by an arginine (R)-rich (RR) motif, hereafter called RR-TZF. Recently, there have been a large number of reports indicating that RR-TZF proteins can localize to processing bodies (P-bodies) and stress granules (SG), two novel cytoplasmic aggregations of messenger ribonucleoprotein complexes (mRNPs), and play critical roles in plant growth, development and stress response, probably via RNA regulation. This review focuses on the classification and most recent development of molecular, cellular and genetic analyses of plant RR-TZF proteins.


Assuntos
Desenvolvimento Vegetal , Proteínas de Plantas/classificação , Plantas/genética , Estresse Fisiológico , Proteínas de Plantas/genética , Plantas/metabolismo , RNA de Plantas/metabolismo , Sequências de Repetição em Tandem , Dedos de Zinco
9.
Plant Cell Environ ; 36(8): 1507-19, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23421766

RESUMO

Tandem CCCH zinc finger proteins (TZFs) are post-transcriptional regulators of gene expression in animals and yeast. Genetic studies indicate that plant TZFs are involved in hormone-mediated developmental and environmental responses. We have demonstrated previously that Arabidopsis AtTZF1 can localize to processing bodies (PBs) and stress granules (SGs), and affects abscisic acid (ABA)- and gibberellic acid (GA)-mediated growth, stress and gene expression responses. Here we show that AtTZF4, 5 and 6 are specifically expressed in seeds. Consistent with the observation that their expression levels decline during seed imbibition, AtTZF4, 5 and 6 are up-regulated by ABA and down-regulated by GA. Mutant analyses indicate that AtTZF4, 5 and 6 act as positive regulators for ABA- and negative regulators for light- and GA-mediated seed germination responses. Results of gene expression analysis indicate that AtTZF4, 5 and 6 affect seed germination by controlling genes critical for ABA and GA response. Furthermore, AtTZF4, 5 and 6 can co-localize with both PB and SG markers in Arabidopsis cells. Specifically, AtTZF6 can be assembled into PBs and SGs in embryos with the induction of stress hormone methyl jasmonate under the control of native AtTZF6 promoter.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Sementes/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Grânulos Citoplasmáticos , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Genes Reporter , Germinação , Giberelinas/farmacologia , Modelos Biológicos , Mutação , Especificidade de Órgãos , Dormência de Plantas , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...