Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(40): 22115-20, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26402417

RESUMO

In this letter, we demonstrate a solution-based method for a one-step deposition and surface passivation of the as-grown silicon nanowires (Si NWs). Using N,N-dimethylformamide (DMF) as a mild oxidizing agent, the NWs' surface traps density was reduced by over 2 orders of magnitude from 1×10(13) cm(-2) in pristine NWs to 3.7×10(10) cm(-2) in DMF-treated NWs, leading to a dramatic hysteresis reduction in NW field-effect transistors (FETs) from up to 32 V to a near-zero hysteresis. The change of the polyphenylsilane NW shell stoichiometric composition was confirmed by X-ray photoelectron spectroscopy analysis showing a 35% increase in fully oxidized Si4+ species for DMF-treated NWs compared to dry NW powder. Additionally, a shell oxidation effect induced by DMF resulted is a more stable NW FET performance with steady transistor currents and only 1.5 V hysteresis after 1000 h of air exposure.

2.
ACS Nano ; 8(1): 915-22, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24313423

RESUMO

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g(-1) for 100 cycles when cycled at C/10 and over 1200 mA h g(-1) when cycled more rapidly at 1C against Li metal. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

3.
ACS Appl Mater Interfaces ; 5(18): 9134-40, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23957691

RESUMO

The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.


Assuntos
Cobre/química , Gálio/química , Índio/química , Nanopartículas/química , Selênio/química , Energia Solar , Vidro/química , Temperatura
4.
Nano Lett ; 13(7): 3101-5, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23731184

RESUMO

Silicon nanorods are grown by trisilane decomposition in hot squalane in the presence of tin (Sn) nanocrystals and dodecylamine. Sn induces solution-liquid-solid nanorod growth with dodecylamine serving as a stabilizing ligand. As-prepared nanorods do not luminesce, but etching with hydrofluoric acid to remove residual surface oxide followed by thermal hydrosilylation with 1-octadecene induces bright photoluminescence with quantum yields of 4-5%. X-ray photoelectron spectroscopy shows that the ligands prevent surface oxidation for months when stored in air.

5.
Dalton Trans ; 42(35): 12675-80, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23674161

RESUMO

A synthetic route to crystalline silicon (Si) nanowires with an amorphous Si shell is reported. Trisilane (Si3H8) and Sn(HMDS)2 are decomposed in supercritical toluene at 450 °C. Sn(HMDS)2 creates Sn nanoparticles that seed Si nanowire growth by the supercritical fluid-liquid-solid (SFLS) mechanism. The Si : Sn ratio in the reaction determines the growth of amorphous Si shell. No amorphous shell forms at relatively low Si : Sn ratios of 20 : 1, whereas higher Si : Sn ratio of 40 : 1 leads to significant amorphous shell. We propose that hydrogen evolved from trisilane decomposition etches away the Sn seed particles as nanowires grow, which promotes the amorphous Si shell deposition when the higher Si : Sn ratios are used.

6.
Langmuir ; 29(5): 1533-40, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23312033

RESUMO

H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties-ethyl ester, methyl ester, or carboxylic acids-without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene.


Assuntos
Alcenos/química , Nanopartículas/química , Silício/química , Temperatura , Ácidos Carboxílicos/química , Ésteres/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
ACS Nano ; 6(1): 459-66, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22148749

RESUMO

Nanoscale self-assembly of block copolymer thin films has garnered significant research interest for nanotemplate design and membrane applications. To fulfill these roles, control of thin film morphology and orientation is critical. Solvent vapor annealing (SVA) treatments can be used to kinetically trap morphologies in thin films not achievable by traditional thermal treatments, but many variables affect the outcome of SVA, including solvent choice, total solvent concentration/swollen film thickness, and solvent removal rate. In this work, we systematically examined the effect of solvent removal rate on the final thin film morphology of a cylinder-forming ABA triblock copolymer. By kinetically trapping the film morphologies at key points during the solvent removal process and then using successive ultraviolet ozone (UVO) etching steps followed by atomic force microscopy (AFM) imaging to examine the through-film morphologies of the films, we determined that the mechanism for cylinder reorientation from substrate-parallel to substrate-perpendicular involved the propagation of changes at the free surface through the film toward the substrate as a front. The degree of reorientation increased with successively slower solvent removal rates. Furthermore, the AFM/UVO etching scheme permitted facile real-space analysis of the thin film internal structure in comparison to cross-sectional transmission electron microscopy.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polímeros/química , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/química , Gases/isolamento & purificação , Dureza , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Solventes/química , Solventes/isolamento & purificação , Propriedades de Superfície
8.
J Am Chem Soc ; 133(51): 20914-21, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22070459

RESUMO

A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid-liquid-solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 µm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g(-1) were achieved without the addition of conductive carbon or binder.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanofios/química , Silício/química , Eletrodos , Nanofios/ultraestrutura
9.
Nano Lett ; 11(3): 1351-7, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21306128

RESUMO

Solvent vapor annealing (SVA) with solvent mixtures is a promising approach for controlling block copolymer thin film self-assembly. In this work, we present the design and fabrication of a solvent-resistant microfluidic mixing device to produce discrete SVA gradients in solvent composition and/or total solvent concentration. Using this device, we identified solvent composition dependent morphology transformations in poly(styrene-b-isoprene-b-styrene) films. This device enables faster and more robust exploration of SVA parameter space, providing insight into self-assembly phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...