Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177050

RESUMO

We examined the effect of hydrogen on the growth of single-walled carbon nanotubes in the aerosol (a specific case of the floating catalyst) chemical vapor deposition process using ethylene as a carbon source and ferrocene as a precursor for a Fe-based catalyst. With a comprehensive set of physical methods (UV-vis-NIR and Raman spectroscopies, transmission electron microscopy, scanning electron microscopy, differential mobility analysis, and four-probe sheet resistance measurements), we showed hydrogen to inhibit ethylene pyrolysis extending the window of synthesis parameters. Moreover, the detailed study at different temperatures allowed us to distinguish three different regimes for the hydrogen effect: pyrolysis suppression at low concentrations (I) followed by surface cleaning/activation promotion (II), and surface blockage/nanotube etching (III) at the highest concentrations. We believe that such a detailed study will help to reveal the complex role of hydrogen and contribute toward the synthesis of single-walled carbon nanotubes with detailed characteristics.

2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047655

RESUMO

We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties. Moreover, the relatively high concentrations and low temperature stability of bithiophene result in non-catalytical decomposition, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical use for hierarchical adsorbents, protective membranes, or electrocatalysis.


Assuntos
Grafite , Nanotubos de Carbono , Nanotubos de Carbono/química , Grafite/química
3.
J Colloid Interface Sci ; 640: 1015-1028, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921382

RESUMO

HYPOTHESIS: Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used. EXPERIMENTS: Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential. FINDINGS: Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA