Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338886

RESUMO

The COVID-19 pandemic has had a significant and enduring influence on global health, including maternal and fetal well-being. Evidence suggests that placental dysfunction is a potential consequence of SARS-CoV-2 infection during pregnancy, which may result in adverse outcomes such as preeclampsia and preterm birth. However, the molecular mechanisms underlying this association remain unclear, and it is uncertain whether a mature placenta can protect the fetus from SARS-CoV-2 infection. To address the above gap, we conducted a transcriptome-based study of the placenta in both maternal and fetal compartments. We collected placental samples from 16 women immediately after term delivery, seven of which had SARS-CoV-2 infection confirmed by PCR before parturition. Notably, we did not detect any viral load in either the maternal or fetal compartments of the placenta, regardless of symptomatic status. We separately extracted total RNA from placental tissues from maternal and fetal compartments, constructed cDNA libraries, and sequenced them to assess mRNA. Our analysis revealed 635 differentially expressed genes when a false discovery rate (FDR ≤ 0.05) was applied in the maternal placental tissue, with 518 upregulated and 117 downregulated genes in the SARS-CoV-2-positive women (n = 6) compared with the healthy SARS-CoV-2-negative women (n = 8). In contrast, the fetal compartment did not exhibit any significant changes in gene expression with SARS-CoV-2 infection. We observed a significant downregulation of nine genes belonging to the pregnancy-specific glycoprotein related to the immunoglobulin superfamily in the maternal compartment with active SARS-CoV-2 infection (fold change range from -13.70 to -5.28; FDR ≤ 0.01). Additionally, comparing symptomatic women with healthy women, we identified 1788 DEGs. Furthermore, a signaling pathway enrichment analysis revealed that pathways related to oxidative phosphorylation, insulin secretion, cortisol synthesis, estrogen signaling, oxytocin signaling, antigen processing, and presentation were altered significantly in symptomatic women. Overall, our study sheds light on the molecular mechanisms underlying the reported clinical risks of preeclampsia and preterm delivery in women with SARS-CoV-2 infection. Nonetheless, studies with larger sample sizes are warranted to further deepen our understanding of the molecular mechanisms of the placenta's anti-viral effects in maternal SARS-CoV-2 infection.


Assuntos
COVID-19 , Pré-Eclâmpsia , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Placenta , Terceiro Trimestre da Gravidez , Pandemias , COVID-19/genética , SARS-CoV-2 , Perfilação da Expressão Gênica , Transmissão Vertical de Doenças Infecciosas
3.
Genome Med ; 14(1): 64, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35701800

RESUMO

BACKGROUND: Breast cancer is a leading cause of death in premenopausal women. Progesterone drives expansion of luminal progenitor cells, leading to the development of poor-prognostic breast cancers. However, it is not known if antagonising progesterone can prevent breast cancers in humans. We suggest that targeting progesterone signalling could be a means of reducing features which are known to promote breast cancer formation. METHODS: In healthy premenopausal women with and without a BRCA mutation we studied (i) estrogen and progesterone levels in saliva over an entire menstrual cycle (n = 20); (ii) cancer-free normal breast-tissue from a control population who had no family or personal history of breast cancer and equivalently from BRCA1/2 mutation carriers (n = 28); triple negative breast cancer (TNBC) biopsies and healthy breast tissue taken from sites surrounding the TNBC in the same individuals (n = 14); and biopsies of ER+ve/PR+ve stage T1-T2 cancers and healthy breast tissue taken from sites surrounding the cancer in the same individuals (n = 31); and (iii) DNA methylation and DNA mutations in normal breast tissue (before and after treatment) from clinical trials that assessed the potential preventative effects of vitamins and antiprogestins (mifepristone and ulipristal acetate; n = 44). RESULTS: Daily levels of progesterone were higher throughout the menstrual cycle of BRCA1/2 mutation carriers, raising the prospect of targeting progesterone signalling as a means of cancer risk reduction in this population. Furthermore, breast field cancerization DNA methylation signatures reflective of (i) the mitotic age of normal breast epithelium and (ii) the proportion of luminal progenitor cells were increased in breast cancers, indicating that luminal progenitor cells with elevated replicative age are more prone to malignant transformation. The progesterone receptor antagonist mifepristone reduced both the mitotic age and the proportion of luminal progenitor cells in normal breast tissue of all control women and in 64% of BRCA1/2 mutation carriers. These findings were validated by an alternate progesterone receptor antagonist, ulipristal acetate, which yielded similar results. Importantly, mifepristone reduced both the TP53 mutation frequency as well as the number of TP53 mutations in mitotic-age-responders. CONCLUSIONS: These data support the potential usage of antiprogestins for primary prevention of poor-prognostic breast cancers. TRIAL REGISTRATION: Clinical trial 1 Mifepristone treatment prior to insertion of a levonorgestrel releasing intrauterine system for improved bleeding control - a randomized controlled trial, clinicaltrialsregister.eu, 2009-009014-40 ; registered on 20 July 2009. Clinical trial 2 The effect of a progesterone receptor modulator on breast tissue in women with BRCA1 and 2 mutations, clinicaltrials.gov, NCT01898312 ; registered on 07 May 2013. Clinical trial 3 A pilot prevention study of the effects of the anti- progestin Ulipristal Acetate (UA) on surrogate markers of breast cancer risk, clinicaltrialsregister.eu, 2015-001587-19 ; registered on 15 July 2015.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Epigênese Genética , Feminino , Humanos , Mifepristona , Mutação , Progesterona , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Neoplasias de Mama Triplo Negativas/genética
4.
Hum Reprod ; 37(4): 734-746, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35147192

RESUMO

STUDY QUESTION: Is the composition of microRNAs (miRNAs) in uterine fluid (UF) of women with recurrent implantation failure (RIF) different from that of healthy fertile women? SUMMARY ANSWER: The composition of miRNAs in UF of women with RIF is different from that of healthy fertile women and the dysregulated miRNAs are associated with impaired endometrial receptivity and embryo implantation. WHAT IS KNOWN ALREADY: It has previously been demonstrated that the miRNAs secreted from endometrial cells into the UF contribute to the achievement of endometrial receptivity. Endometrial miRNAs are dysregulated in women with RIF. STUDY DESIGN, SIZE, DURATION: In this descriptive laboratory case-control study, miRNA abundancy was compared between UF collected during implantation phase from healthy fertile women (n = 17) and women with RIF (n = 34), which was defined as three failed IVF cycles with high-quality embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: Recruitment of study subjects and sampling of UF were performed at two university clinics in Stockholm, Sweden and Tartu, Estonia. The study participants monitored their menstrual cycles using an LH test kit. The UF samples were collected on Day LH + 7-9 by flushing with saline. Samples were processed for small RNA sequencing and mapped for miRNAs. The differential abundance of miRNAs in UF was compared between the two groups using differential expression analysis (DESeq2). Further downstream analyses, including miRNA target gene prediction (miRTarBase), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (g:Profiler) and external validation using relevant published data, were performed on the dysregulated miRNAs. Two miRNAs were technically validated with quantitative real-time PCR (RT-PCR). MAIN RESULTS AND THE ROLE OF CHANCE: After processing of the sequencing data, there were 15 samples in the healthy fertile group and 33 samples in the RIF group. We found 61 differentially abundant UF miRNAs (34 upregulated and 27 downregulated) in RIF compared to healthy women with a false discovery rate of <0.05 and a fold change (FC) of ≤-2 or ≥2. When analyzed with published literature, we found that several of the differentially abundant miRNAs are expressed in endometrial epithelial cells and have been reported in endometrial extracellular vesicles and in association with endometrial receptivity and RIF. Their predicted target genes were further expressed both in the trophectodermal cells of blastocyst-stage embryos and endometrial mid-secretory epithelial cells, as assessed by publicly available single-cell transcriptome-sequencing studies. Pathway analysis further revealed that 25 pathways, having key roles in endometrial receptivity and implantation, were significantly enriched. Hsa-miR-486-5p (FC -20.32; P-value = 0.004) and hsa-miR-92b-3p (FC -9.72; P-value = 0.004) were successfully technically validated with RT-PCR. LARGE SCALE DATA: The data are available in Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/ with GEO accession number: GSE173289. LIMITATIONS, REASONS FOR CAUTION: This is a descriptive study with a limited number of study participants. Moreover, the identified differentially abundant miRNAs should be validated in a larger study cohort, and the predicted miRNA target genes and enriched pathways in RIF need to be confirmed and further explored in vitro. WIDER IMPLICATIONS OF THE FINDINGS: RIF is a major challenge in the current IVF setting with no diagnostic markers nor effective treatment options at hand. For the first time, total miRNAs have been extensively mapped in receptive phase UF of both healthy women with proven fertility and women diagnosed with RIF. Our observations shed further light on the molecular mechanisms behind RIF, with possible implications in future biomarker and clinical treatment studies. STUDY FUNDING/COMPETING INTEREST(S): This work was financially supported by the Swedish Research Council (2017-00932), a joint grant from Region Stockholm and Karolinska Institutet (ALF Medicine 2020, FoUI-954072), Estonian Research Council (PRG1076), Horizon 2020 innovation (ERIN, EU952516) and European Commission and Enterprise Estonia (EU48695). The authors have no competing interests to declare for the current study.


Assuntos
Infertilidade Feminina , MicroRNAs , Estudos de Casos e Controles , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/terapia , MicroRNAs/genética , MicroRNAs/metabolismo
5.
J Neuroinflammation ; 19(1): 20, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062962

RESUMO

BACKGROUND: Fluorescent reporter labeling and promoter-driven Cre-recombinant technologies have facilitated cellular investigations of physiological and pathological processes, including the widespread use of the Cx3cr1CreER-Eyfp/wt mouse strain for studies of microglia. METHODS: Immunohistochemistry, Flow Cytometry, RNA sequencing and whole-genome sequencing were used to identify the subpopulation of microglia in Cx3cr1CreER-Eyfp/wt mouse brains. Genetically mediated microglia depletion using Cx3cr1CreER-Eyfp/wtRosa26DTA/wt mice and CSF1 receptor inhibitor PLX3397 were used to deplete microglia. Primary microglia proliferation and migration assay were used for in vitro studies. RESULTS: We unexpectedly identified a subpopulation of microglia devoid of genetic modification, exhibiting higher Cx3cr1 and CX3CR1 expression than Cx3cr1CreER-Eyfp/wtCre+Eyfp+ microglia in Cx3cr1CreER-Eyfp/wt mouse brains, thus termed Cx3cr1highCre-Eyfp- microglia. This subpopulation constituted less than 1% of all microglia under homeostatic conditions, but after Cre-driven DTA-mediated microglial depletion, Cx3cr1highCre-Eyfp- microglia escaped depletion and proliferated extensively, eventually occupying one-third of the total microglial pool. We further demonstrated that the Cx3cr1highCre-Eyfp- microglia had lost their genetic heterozygosity and become homozygous for wild-type Cx3cr1. Therefore, Cx3cr1highCre-Eyfp- microglia are Cx3cr1wt/wtCre-Eyfp-. Finally, we demonstrated that CX3CL1-CX3CR1 signaling regulates microglial repopulation both in vivo and in vitro. CONCLUSIONS: Our results raise a cautionary note regarding the use of Cx3cr1CreER-Eyfp/wt mouse strains, particularly when interpreting the results of fate mapping, and microglial depletion and repopulation studies.


Assuntos
Microglia , Transdução de Sinais , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo
6.
Life (Basel) ; 11(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947922

RESUMO

Embryo implantation depends on endometrial receptivity (ER). To achieve ER, the preparation of the uterine lining requires controlled priming by ovarian hormones and the expression of numerous genes in the endometrial tissue. microRNAs (miRs) have emerged as critical genetic regulators of ER in fertility and of the diseases that are associated with infertility. With the rapid development of next-generation sequencing technologies, it has become clear that miR genes can produce canonical miRs and variants-isomiRs. Here, we describe miR/isomiR expression dynamics across the four time points of natural chorionic gonadotropin (hCG)-administered cycles. Sequencing of the small RNAs (sRNA-seq) revealed that the most significant expression changes during the transition from the pre-receptive to the receptive phase occurred in the isomiR families of miR-125a, miR-125b, miR-10a, miR-10b, miR-449c, miR-92a, miR-92b, and miR-99a. Pairing the analysis of the differentially expressed (DE) miRs/isomiRs and their predicted DE mRNA targets uncovered 280 negatively correlating pairs. In the receptive endometrium, the 5'3'-isomiRs of miR-449c, which were among the most highly up-regulated isomiRs, showed a negative correlation with their target, transcription factor (TF) MYCN, which was down-regulated. Joint analysis of the miR/isomiR and TF expression identified several regulatory interactions. Based on these data, a regulatory TF-miR/isomiR gene-target circuit including let7g-5p and miR-345; the isomiR families of miR-10a, miR-10b, miR-92a, and miR-449c; and MYCN and TWIST1 was proposed to play a key role in the establishment of ER. Our work uncovers the complexity and dynamics of the endometrial isomiRs that can act cooperatively with miRs to control the functionally important genes that are critical to ER. Further studies of miR/isomiR expression patterns that are paired with those of their target mRNAs may provide a more in-depth picture of the endometrial pathologies that are associated with implantation failure.

7.
Reprod Biol Endocrinol ; 19(1): 115, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289864

RESUMO

BACKGROUND: The period of time when the embryo and the endometrium undergo significant morphological alterations to facilitate a successful implantation-known as "window of implantation"-is a critical moment in human reproduction. Embryo and the endometrium communicate extensively during this period, and lipid bilayer bound nanoscale extracellular vesicles (EVs) are purported to be integral to this communication. METHODS: To investigate the nature of the EV-mediated embryo-maternal communication, we have supplemented trophoblast analogue spheroid (JAr) derived EVs to an endometrial analogue (RL 95-2) cell layer and characterized the transcriptomic alterations using RNA sequencing. EVs derived from non-trophoblast cells (HEK293) were used as a negative control. The cargo of the EVs were also investigated through mRNA and miRNA sequencing. RESULTS: Trophoblast spheroid derived EVs induced drastic transcriptomic alterations in the endometrial cells while the non-trophoblast cell derived EVs failed to induce such changes demonstrating functional specificity in terms of EV origin. Through gene set enrichment analysis (GSEA), we found that the response in endometrial cells was focused on extracellular matrix remodelling and G protein-coupled receptors' signalling, both of which are of known functional relevance to endometrial receptivity. Approximately 9% of genes downregulated in endometrial cells were high-confidence predicted targets of miRNAs detected exclusively in trophoblast analogue-derived EVs, suggesting that only a small proportion of reduced expression in endometrial cells can be attributed directly to gene silencing by miRNAs carried as cargo in the EVs. CONCLUSION: Our study reveals that trophoblast derived EVs have the ability to modify the endometrial gene expression, potentially with functional importance for embryo-maternal communication during implantation, although the exact underlying signalling mechanisms remain to be elucidated.


Assuntos
Implantação do Embrião/fisiologia , Embrião de Mamíferos/fisiologia , Endométrio/fisiologia , Circulação Placentária/fisiologia , Transcriptoma/fisiologia , Trofoblastos/fisiologia , Linhagem Celular Tumoral , Embrião de Mamíferos/citologia , Endométrio/citologia , Feminino , Células HEK293 , Humanos , Gravidez
8.
J Pers Med ; 11(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067358

RESUMO

The endometrium undergoes regular regeneration and stromal proliferation as part of the normal menstrual cycle. To better understand cellular interactions driving the mechanisms in endometrial regeneration we employed single-cell RNA sequencing. Endometrial biopsies were obtained during the proliferative phase of the menstrual cycle from healthy fertile women and processed to single-cell suspensions which were submitted for sequencing. In addition to known endometrial cell types, bioinformatic analysis revealed multiple stromal populations suggestive of specific stromal niches with the ability to control inflammation and extracellular matrix composition. Ten different stromal cells and two pericyte subsets were identified. Applying different R packages (Seurat, SingleR, Velocyto) we established cell cluster diversity and cell lineage/trajectory, while using external data to validate our findings. By understanding healthy regeneration in the described stromal compartments, we aim to identify points of further investigation and possible targets for novel therapy development for benign gynecological disorders affecting endometrial regeneration and proliferation such as endometriosis and Asherman's syndrome.

9.
Hum Reprod ; 35(10): 2280-2293, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897364

RESUMO

STUDY QUESTION: What is the physiological role of transforming growth factor-beta (TGF-ß1) and syndecans (SDC1, SDC4) in endometriotic cells in women with endometriosis? SUMMARY ANSWER: We observed an abnormal, pro-invasive phenotype in a subgroup of samples with ovarian endometriosis, which was reversed by combining gene silencing of SDC1 with the TGF-ß1 treatment. WHAT IS KNOWN ALREADY: Women with endometriosis express high levels of TGF-ß1 and the proteoglycan co-receptors SDC1 and SDC4 within endometriotic cysts. However, how SDC1 and SDC4 expression is regulated by TGF-ß1 and the physiological significance of the high expression in endometriotic cysts remains unknown as does the potential role in disease severity. STUDY DESIGN, SIZE, DURATION: We utilized a pre-validated panel of stem- and cancer cell-associated markers on endometriotic tissue (n = 15) to stratify subgroups of women with endometriosis. Furthermore, CD90+CD73+CD105+ (SC+) endometriotic stromal cells from these patient subgroups were explored for their invasive behaviour in vitro by transient gene inhibition of SDC1 or SDC4, both in the presence or absence of TGF-ß1 treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometriotic cyst biopsies (n = 15) were obtained from women diagnosed with ovarian endometriosis (ASRM Stage III-IV). Gene expression variability was assessed on tissue samples by applying gene clustering tools for the dataset generated from the pre-validated panel of markers. Three-dimensional (3D) spheroids from endometriotic SC+ were treated in vitro with increasing doses of TGF-ß1 or the TGFBRI/II inhibitor Ly2109761 and assessed for SDC1, SDC4 expression and in vitro 3D-spheroid invasion. Transcriptomic signatures from the invaded 3D spheroids were evaluated upon combining transient gene silencing of SDC1 or SDC4, both in presence or absence of TGF-ß1 treatment. Furthermore, nanoscale changes on the surface of endometriotic cells were analysed after treatment with TGF-ß1 or TGFBRI/II inhibitor using atomic force microscopy. MAIN RESULTS AND THE ROLE OF CHANCE: Gene clustering analysis revealed that endometriotic tissues displayed variability in their gene expression patterns; a small subgroup of samples (2/15, Endo-hi) exhibited high levels of SDC1, SDC4 and molecules involved in TGF-ß signalling (TGF-ß1, ESR1, CTNNB1, SNAI1, BMI1). The remaining endometriotic samples (Endo-lo) showed a uniform, low gene expression profile. Three-dimensional spheroids derived from Endo-hi SC+ but not Endo-lo SC+ samples showed an aberrant expression of SDC1 and exhibited enhanced 3D-spheroid invasion in vitro, upon rhTGF-ß1 treatment. However, this abnormal, pro-invasive response of Endo-hi SC+ was reversed upon gene silencing of SDC1 with the TGF-ß1 treatment. Interestingly, transcriptomic signatures of 3D spheroids silenced for SDC1 and consecutively treated with TGF-ß1, showed a down-regulation of cancer-associated pathways such as WNT and GPCR signalling. LARGE SCALE DATA: Transcriptomic data were deposited in NCBI's Gene Expression Omnibus (GEO) and could be retrieved using GEO series accession number: GSE135122. LIMITATIONS, REASONS FOR CAUTION: It is estimated that about 2.5% of endometriosis patients have a potential risk for developing ovarian cancer later in life. It is possible that the pro-oncogenic molecular changes observed in this cohort of endometriotic samples may not correlate with clinical occurrence of ovarian cancer later in life, thus a validation will be required. WIDER IMPLICATIONS OF THE FINDINGS: This study emphasizes the importance of interactions between syndecans and TGF-ß1 in the pathophysiology of endometriosis. We believe that this knowledge could be important in order to better understand endometriosis-associated complications such as ovarian cancer or infertility. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by Cancerfonden (CAN 2016/696), Radiumhemmets Forskningsfonder (Project no. 154143 and 184033), EU MSCA-RISE-2015 project MOMENDO (691058), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695) and Karolinska Institute. Authors do not have any conflict of interest.


Assuntos
Endometriose , Neoplasias Ovarianas , Endometriose/genética , Endométrio , Estônia , Feminino , Humanos , Células Estromais , Sindecana-1/genética
10.
Sci Rep ; 6: 33811, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27665743

RESUMO

The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity.

11.
Am J Reprod Immunol ; 72(2): 148-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24635108

RESUMO

Advancement in the field of ART has lead to the possibility of achieving good quality embryos. However, the success rate in ART needs further improvement. This is largely dependent on identifying the receptive endometrium for the successful implantation of embryos as well as modulating the endometrium to the receptive stage. In the last half-a-decade, focus has been shifting toward identifying the receptive endometrium. Here, we summarize different tools explored to identify receptive endometrium from the literature, mainly focusing on the past decade, with the help of PubMed. The quest to identify endometrial receptivity markers has lead to the exploration of morphological features at micro and macro scale levels. A large number of studies at molecular levels have focused on genomic, proteomic and lipidomic targets. Recent development of endometrial receptivity array is a promising diagnostic instrument. However, a noninvasive possibility for the diagnosis of endometrial receptivity would be an ideal tool, which could be used in the clinic to improve the success rate of ART. Improved knowledge on endometrial receptivity will not only help to improve the diagnosis and treatment of infertility but will also give possibilities to develop new contraceptive methods targeting the endometrium.


Assuntos
Implantação do Embrião/imunologia , Endometriose/imunologia , Endométrio/imunologia , Regulação da Expressão Gênica/imunologia , Infertilidade Feminina/imunologia , Biomarcadores/metabolismo , Bases de Dados Genéticas , Embrião de Mamíferos , Endometriose/genética , Endometriose/fisiopatologia , Endométrio/metabolismo , Endométrio/fisiopatologia , Feminino , Fertilização in vitro , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/fisiopatologia , Infertilidade Feminina/prevenção & controle , Lipídeos/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Proteômica , Análise Serial de Tecidos
12.
Fertil Steril ; 100(4): 1160-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23876532

RESUMO

OBJECTIVE: To study the effect of polyethylene glycated leukemia inhibitory factor (LIF) antagonist (PEGLA) in the human blastocyst viability and implantation process. DESIGN: In vitro study. SETTING: University hospital and research laboratory. PATIENT(S): Endometrial biopsy samples from fertile donors (n = 20), and surplus, frozen, good-quality human embryos obtained from an in vitro fertilization (IVF) clinic that survived thawing (n = 51). INTERVENTION(S): Timed human endometrial biopsy on the day of luteinizing hormone peak + 4 days (LH + 4). MAIN OUTCOME MEASURE(S): Human embryo attachment rate, embryo quality, and expression of AKT and caspase-3. RESULT(S): PEGLA significantly reduced the embryo attachment rate to the endometrial construct. It decreased both mRNA and protein for LIF in the endometrial construct. Inhibition of embryonic LIF triggered apoptosis. Analysis of these blastocysts by immunofluorescence and real-time polymerase chain reaction showed a down-regulation in AKT activation and an increase in caspase-3 activation compared with the control group of blastocysts. CONCLUSION(S): The LIF inhibitor PEGLA could be a potential nonsteroidal fertility-regulating agent in humans. It acts on endometrial epithelial cells by down-regulating endometrial epithelial LIF. Inhibition of blastocyst LIF decreased its cell survival factor p-AKT and increased apoptosis (cleaved caspase-3). This highlights that embryonic LIF is vital for human embryo implantation.


Assuntos
Apoptose/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Fator Inibidor de Leucemia/antagonistas & inibidores , Fator Inibidor de Leucemia/farmacologia , Polietilenoglicóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Biópsia , Blastocisto/enzimologia , Blastocisto/patologia , Caspase 3/metabolismo , Regulação para Baixo , Técnicas de Cultura Embrionária , Endométrio/metabolismo , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator Inibidor de Leucemia/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...