Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 232: 102545, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042248

RESUMO

Traditionally, the neural processing of faces and bodies is studied separately, although they are encountered together, as parts of an agent. Despite its social importance, it is poorly understood how faces and bodies interact, particularly at the single-neuron level. Here, we examined the interaction between faces and bodies in the macaque inferior temporal (IT) cortex, targeting an fMRI-defined patch. We recorded responses of neurons to monkey images in which the face was in its natural location (natural face-body configuration), or in which the face was mislocated with respect to the upper body (unnatural face-body configuration). On average, the neurons did not respond stronger to the natural face-body configurations compared to the summed responses to their faces and bodies, presented in isolation. However, the neurons responded stronger to the natural compared to the unnatural face-body configurations. This configuration effect was present for face- and monkey-centered images, did not depend on local feature differences between configurations, and was present when the face was replaced by a small object. The face-body interaction rules differed between natural and unnatural configurations. In sum, we show for the first time that single IT neurons process faces and bodies in a configuration-specific manner, preferring natural face-body configurations.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Animais , Reconhecimento Visual de Modelos/fisiologia , Face , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Macaca , Mapeamento Encefálico
2.
Cell Rep ; 42(12): 113438, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995183

RESUMO

The temporal cortex represents social stimuli, including bodies. We examine and compare the contributions of dynamic and static features to the single-unit responses to moving monkey bodies in and between a patch in the anterior dorsal bank of the superior temporal sulcus (dorsal patch [DP]) and patches in the anterior inferotemporal cortex (ventral patch [VP]), using fMRI guidance in macaques. The response to dynamics varies within both regions, being higher in DP. The dynamic body selectivity of VP neurons correlates with static features derived from convolutional neural networks and motion. DP neurons' dynamic body selectivity is not predicted by static features but is dominated by motion. Whereas these data support the dominance of motion in the newly proposed "dynamic social perception" stream, they challenge the traditional view that distinguishes DP and VP processing in terms of motion versus static features, underscoring the role of inferotemporal neurons in representing body dynamics.


Assuntos
Percepção de Movimento , Lobo Temporal , Animais , Macaca mulatta , Estimulação Luminosa , Lobo Temporal/fisiologia , Córtex Cerebral/fisiologia , Percepção de Movimento/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
3.
J Neurosci ; 41(30): 6484-6501, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34131035

RESUMO

Current models of object recognition are based on spatial representations build from object features that are simultaneously present in the retinal image. However, one can recognize an object when it moves behind a static occlude, and only a small fragment of its shape is visible through a slit at a given moment in time. Such anorthoscopic perception requires spatiotemporal integration of the successively presented shape parts during slit-viewing. Human fMRI studies suggested that ventral visual stream areas represent whole shapes formed through temporal integration during anorthoscopic perception. To examine the time course of shape-selective responses during slit-viewing, we recorded the responses of single inferior temporal (IT) neurons of rhesus monkeys to moving shapes that were only partially visible through a static narrow slit. The IT neurons signaled shape identity by their response when that was cumulated across the duration of the shape presentation. Their shape preference during slit-viewing equaled that for static, whole-shape presentations. However, when analyzing their responses at a finer time scale, we showed that the IT neurons responded to particular shape fragments that were revealed by the slit. We found no evidence for temporal integration of slit-views that result in a whole-shape representation, even when the monkey was matching slit-views of a shape to static whole-shape presentations. These data suggest that, although the temporally integrated response of macaque IT neurons can signal shape identity in slit-viewing conditions, the spatiotemporal integration needed for the formation of a whole-shape percept occurs in other areas, perhaps downstream to IT.SIGNIFICANCE STATEMENT One recognizes an object when it moves behind a static occluder and only a small fragment of its shape is visible through a static slit at a given moment in time. Such anorthoscopic perception requires spatiotemporal integration of the successively presented partial shape parts. Human fMRI studies suggested that ventral visual stream areas represent shapes formed through temporal integration. We recorded the responses of inferior temporal (IT) cortical neurons of macaques during slit-viewing conditions. Although the temporally summated response of macaque IT neurons could signal shape identity under slit-viewing conditions, we found no evidence for a whole-shape representation using analyses at a finer time scale. Thus, the spatiotemporal integration needed for anorthoscopic perception does not occur within IT.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Animais , Macaca mulatta
4.
Front Neurosci ; 11: 234, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491018

RESUMO

Visual categorization plays an important role in fast and efficient information processing; still the neuronal basis of fast categorization has not been established yet. There are two main hypotheses known; both agree that primary, global impressions are based on the information acquired through the magnocellular pathway (MC). It is unclear whether this information is available through the MC that provides information (also) for the ventral pathway or through top-down mechanisms by connections between the dorsal pathway and the ventral pathway via the frontal cortex. To clarify this, a categorization task was performed by 48 subjects; they had to make decisions about objects' sizes. We created stimuli specific to the magno- and parvocellular pathway (PC) on the basis of their spatial frequency content. Transcranial direct-current stimulation was used to assess the role of frontal areas, a target of the MC. Stimulation did not bias the accuracy of decisions when stimuli optimized for the PC were used. In the case of stimuli optimized for the MC, anodal stimulation improved the subjects' accuracy in the behavioral test, while cathodal stimulation impaired accuracy. Our results support the hypothesis that fast visual categorization processes rely on top-down mechanisms that promote fast predictions through coarse information carried by MC via the orbitofrontal cortex.

5.
Perception ; 45(9): 1070-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27271338

RESUMO

Precise timing and presentation of stimuli is critical in vision research, still, the limiting factor in successful recognition is often the monitor itself that is used to present the stimuli. The most widespread method is the use of monitors controlled by personal computers. Traditionally, most experiments used cathode-ray tubes but they are more and more difficult to access, and instead, liquid-crystal displays are getting more and more popular. The two types have fundamentally different working principles and limitations in displaying the stimulus.In our experiments, the temporal precision of the stimulus presentation was in focus. We investigated whether liquid-crystal displays, which are not considered to be fit to display fast successive stimuli, can represent an alternative choice for cathode-ray tubes. We used the double flash and the flicker illusion to compare the technical capabilities of the two monitor types. These illusions not only do require a precise timing but also a very short exposure to the stimuli. At the same time, the interstimulus interval is also of extreme importance. In addition, these illusions require peripheral stimulation of the retina, which is more sensitive to the temporal aspects of the visual stimulus. On the basis of previous studies and our own psychophysical results, we suggest that liquid-crystal displays might be a good alternative for precise, frame-to-frame stimulus presentation even if parts of the stimuli are projected on the peripheral retina.


Assuntos
Apresentação de Dados , Ilusões/fisiologia , Psicofísica/instrumentação , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Cristais Líquidos , Masculino , Adulto Jovem
6.
Brain Res ; 1624: 71-77, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26165152

RESUMO

Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction.


Assuntos
Percepção Auditiva/fisiologia , Detecção de Sinal Psicológico/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Substância Branca/fisiologia , Estimulação Acústica , Adulto , Anisotropia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento Tridimensional , Masculino , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...