Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111848

RESUMO

Atomic-scale chemical modification of surface-adsorbed ethyl groups on Si(001) was induced and studied by means of scanning tunneling microscopy. Tunneling at sample bias >+1.5 V leads to tip-induced C-H cleavage of aß-hydrogen of the covalently bound ethyl configuration. The reaction is characterized by the formation of an additional Si-H and a Si-C bond. The reaction probability shows a linear dependence on the tunneling current at 300 K; the reaction is largely suppressed at 50 K. The observed tip-induced surface reaction at room temperature is thus attributed to a one-electron excitation in combination with thermal activation.

2.
J Chem Phys ; 150(22): 224703, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202240

RESUMO

The reaction dynamics of methanol and water on Si(001) were investigated by means of molecular beam techniques. The initial sticking probability s0 was determined as a function of the kinetic energy of the incoming molecules, Ekin, and surface temperature, Ts. For both, methanol and water, a nonactivated reactional channel was observed; the dynamics were found to be determined by the reaction into the datively bonded intermediate state. A low conversion barrier was deduced for the conversion from this intermediate into the final state. It is attributed to the reaction mechanism, which proceeds via proton transfer from the OH-group of the datively bonded molecules to a Si surface atom. Despite this low conversion barrier, adsorption into the intermediate and further reaction via proton transfer were found to be largely decoupled.

3.
J Phys Condens Matter ; 31(3): 034001, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30523882

RESUMO

Adsorption of ethynyl-cyclopropyl-cyclooctyne (ECCO), an alkyne-functionalized cyclooctyne, on Si(0 0 1) was studied by means of x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Together, XPS and STM results clearly indicate chemoselective adsorption of ECCO on Si(0 0 1) via a [2+2] cycloaddition of the strained triple bond of cyclooctyne without reaction of the ethynyl group. The results are compared to the adsorption of acetylene on Si(0 0 1): C2H2 adsorbs on Si(0 0 1) via a precursor-mediated reaction channel as it was shown by means of temperature dependent measurements of the sticking probability as well as by means of STM experiments at variable temperature. On the other hand, cyclooctyne adsorbs on Si(0 0 1) via a direct reaction channel. This qualitative difference in the reaction pathways of the two functionalities leads to the observed chemoselective adsorption of ECCO via the strained triple bond of cyclooctyne. As the ethynyl group stays intact, monolayers of ECCO on Si(0 0 1) form a well defined interface between the silicon substrate and further organic molecular layers which can be attached to the ethynyl functionality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA