Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Aerosol Med Pulm Drug Deliv ; 36(5): 235-245, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37262184

RESUMO

Background: Significant evidence suggests that SARS-CoV-2 can be transmitted via respiratory aerosols, which are known to vary as a function of respiratory activity. Most animal models examine disease presentation following inhalation of small-particle aerosols similar to those generated during quiet breathing or speaking. However, despite evidence that particle size can influence dose-infectivity relationships and disease presentation for other microorganisms, no studies have examined the infectivity of SARS-CoV-2 contained in larger particle aerosols similar to those produced during coughing, singing, or talking. Therefore, the aim of the present study was to assess the influence of aerodynamic diameter on the infectivity and virulence of aerosols containing SARS-CoV-2 in a hamster model of inhalational COVID-19. Methods: Dose-response relationships were assessed for two different aerosol particle size distributions, with mass median aerodynamic diameters (MMADs) of 1.3 and 5.2 µm in groups of Syrian hamsters exposed to aerosols containing SARS-CoV-2. Results: Disease was characterized by viral shedding in oropharyngeal swabs, increased respiratory rate, decreased activity, and decreased weight gain. Aerosol particle size significantly influenced the median doses to induce seroconversion and viral shedding, with both increasing ∼30-fold when the MMAD was increased. In addition, disease presentation was dose-dependent, with seroconversion and viral shedding occurring at lower doses than symptomatic disease characterized by increased respiratory rate and decreased activity. Conclusions: These results suggest that aerosol particle size may be an important factor influencing the risk of COVID-19 transmission and needs to be considered when developing animal models of disease. This result agrees with numerous previous studies with other microorganisms and animal species, suggesting that it would be generally translatable across different species. However, it should be noted that the absolute magnitude of the observed shifts in the median doses obtained with the specific particle sizes utilized herein may not be directly applicable to other species.


Assuntos
COVID-19 , Animais , Cricetinae , Mesocricetus , Administração por Inalação , Tamanho da Partícula , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Gravidade do Paciente
2.
J Aerosol Med Pulm Drug Deliv ; 35(6): 296-306, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36318785

RESUMO

Background: As the COVID-19 pandemic has progressed, numerous variants of SARS-CoV-2 have arisen, with several displaying increased transmissibility. Methods: The present study compared dose-response relationships and disease presentation in nonhuman primates infected with aerosols containing an isolate of the Gamma variant of SARS-CoV-2 to the results of our previous study with the earlier WA-1 isolate of SARS-CoV-2. Results: Disease in Gamma-infected animals was mild, characterized by dose-dependent fever and oronasal shedding of virus. Differences were observed in shedding in the upper respiratory tract between Gamma- and WA-1-infected animals that have the potential to influence disease transmission. Specifically, the estimated median doses for shedding of viral RNA or infectious virus in nasal swabs were approximately 10-fold lower for the Gamma variant than the WA-1 isolate. Given that the median doses for fever were similar, this suggests that there is a greater difference between the median doses for viral shedding and fever for Gamma than for WA-1 and potentially an increased range of doses for Gamma over which asymptomatic shedding and disease transmission are possible. Conclusions: These results complement those of previous studies, which suggested that differences in exposure dose may help to explain the range of clinical disease presentations observed in individuals with COVID-19, highlighting the importance of public health measures designed to limit exposure dose, such as masking and social distancing. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, as well as to inform dose selection in future studies examining the efficacy of therapeutics and vaccines in animal models of inhalational COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Pandemias/prevenção & controle , Administração por Inalação , Primatas
3.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779426

RESUMO

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Assuntos
COVID-19 , SARS-CoV-2 , Desinfecção/métodos , Humanos , Luz , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação
4.
PLoS Pathog ; 17(8): e1009865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424943

RESUMO

While evidence exists supporting the potential for aerosol transmission of SARS-CoV-2, the infectious dose by inhalation remains unknown. In the present study, the probability of infection following inhalation of SARS-CoV-2 was dose-dependent in a nonhuman primate model of inhalational COVID-19. The median infectious dose, assessed by seroconversion, was 52 TCID50 (95% CI: 23-363 TCID50), and was significantly lower than the median dose for fever (256 TCID50, 95% CI: 102-603 TCID50), resulting in a group of animals that developed an immune response post-exposure but did not develop fever or other clinical signs of infection. In a subset of these animals, virus was detected in nasopharyngeal and/or oropharyngeal swabs, suggesting that infected animals without signs of disease are able to shed virus and may be infectious, which is consistent with reports of asymptomatic spread in human cases of COVID-19. These results suggest that differences in exposure dose may be a factor influencing disease presentation in humans, and reinforce the importance of public health measures that limit exposure dose, such as social distancing, masking, and increased ventilation. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, and, ultimately, mitigation strategies. Additionally, these data will be useful to inform dose selection in future studies examining the efficacy of therapeutics and vaccines against inhalational COVID-19, and as a baseline in healthy, young adult animals for assessment of the importance of other factors, such as age, comorbidities, and viral variant, on the infectious dose and disease presentation.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Macaca fascicularis , Soroconversão , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Febre/virologia , Exposição por Inalação , Masculino , Células Vero , Carga Viral
5.
PLoS Negl Trop Dis ; 12(11): e0006978, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30462637

RESUMO

Nipah virus (NiV) infection can lead to severe respiratory or neurological disease in humans. Transmission of NiV has been shown to occur through contact with virus contaminated fomites or consumption of contaminated food. Previous results using the African green monkey (AGM) model of NiV infection identified aspects of infection that, while similar to humans, don't fully recapitulate disease. Previous studies also demonstrate near uniform lethality that is not consistent with human NiV infection. In these studies, aerosol exposure using an intermediate particle size (7µm) was used to mimic potential human exposure by facilitating virus deposition in the upper respiratory tract. Computed tomography evaluation found some animals developed pulmonary parenchymal disease including consolidations, ground-glass opacities, and reactive adenopathy. Despite the lack of neurological signs, magnetic resonance imaging identified distinct brain lesions in three animals, similar to those previously reported in NiV-infected patients. Immunological characterization of tissues collected at necropsy suggested a local pulmonary inflammatory response with increased levels of macrophages in the lung, but a limited neurologic response. These data provide the first clear evidence of neurological involvement in the AGM that recapitulates human disease. With the development of a disease model that is more representative of human disease, these data suggest that NiV infection in the AGM may be appropriate for evaluating therapeutic countermeasures directed at virus-induced neuropathogenesis.


Assuntos
Aerossóis/efeitos adversos , Infecções por Henipavirus/virologia , Doenças do Sistema Nervoso/virologia , Vírus Nipah/fisiologia , Aerossóis/química , Animais , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Masculino , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/imunologia , Vírus Nipah/química , Tamanho da Partícula , Infecções Respiratórias/etiologia , Infecções Respiratórias/genética , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
6.
J Gen Virol ; 97(8): 1942-1954, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27166137

RESUMO

We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.


Assuntos
Aerossóis , Vírus da Varíola Bovina/patogenicidade , Varíola Bovina/patologia , Varíola Bovina/virologia , Modelos Animais de Doenças , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Macaca mulatta , Infecções Respiratórias/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
Antiviral Res ; 129: 120-129, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923881

RESUMO

BACKGROUND: Influenza results in up to 500,000 deaths annually. Seasonal influenza vaccines have an estimated 60% effectiveness, but provide little or no protection against novel subtypes, and may be less protective in high-risk groups. Neuraminidase inhibitors are recommended for the treatment of severe influenza infection, but are not proven to reduce mortality in severe disease. Preclinical models of severe influenza infection that closely correlate to human disease are needed to assess efficacy of new vaccines and therapeutics. METHODS: We developed a nonhuman primate model of influenza and bacterial co-infection that recapitulates severe pneumonia in humans. Animals were infected with influenza A virus via intra-bronchial or small-particle aerosol inoculation, methicillin-resistant Staphylococcus aureus, or co-infected with influenza and methicillin-resistant S. aureus combined. We assessed the severity of disease in animals over the course of our study using tools available to evaluate critically ill human patients including high-resolution computed tomography imaging of the lungs, arterial blood gas analyses, and bronchoalveolar lavage. RESULTS: Using an intra-bronchial route of inoculation we successfully induced severe pneumonia following influenza infection alone and following influenza and bacterial co-infection. Peak illness was observed at day 6 post-influenza infection, manifested by bilateral pulmonary infiltrates and hypoxemia. The timing of radiographic and physiologic manifestations of disease in our model closely match those observed in severe human influenza infection. DISCUSSION: This was the first nonhuman primate study of influenza and bacterial co-infection where high-resolution computed tomography scanning of the lungs was used to quantitatively assess pneumonia over the course of illness and where hypoxemia was correlated with pneumonia severity. With additional validation this model may serve as a pathway for regulatory approval of vaccines and therapeutics for the prevention and treatment of severe influenza pneumonia.


Assuntos
Coinfecção , Vírus da Influenza A , Modelos Animais , Infecções por Orthomyxoviridae/complicações , Pneumonia Estafilocócica/complicações , Pneumonia Viral/complicações , Animais , Humanos , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza , Influenza Humana/complicações , Influenza Humana/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
8.
Virology ; 481: 124-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25776759

RESUMO

Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases.


Assuntos
Vírus da Varíola Bovina/fisiologia , Modelos Animais de Doenças , Macaca mulatta , Doenças Respiratórias/virologia , Aerossóis/análise , Animais , Varíola Bovina/imunologia , Varíola Bovina/mortalidade , Varíola Bovina/patologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/patogenicidade , Feminino , Humanos , Masculino , Monócitos/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/mortalidade , Doenças Respiratórias/patologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...