Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16736, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028849

RESUMO

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated optic atrophy. A complementation assay using aco1-deficient yeast revealed a growth defect for the mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient-derived fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while ACO2 enzyme activity was not affected compared to two age- and gender-matched control lines. Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial membrane potential or mitochondrial superoxide production, were not changed under baseline conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced mtDNA transcription levels in ACO2-mutant fibroblasts. Inducing oxidative stress led to an increased susceptibility for cell death in ACO2-mutant fibroblasts compared to controls. Our study reveals that a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy.


Assuntos
Aconitato Hidratase/genética , Fibroblastos/metabolismo , Haploinsuficiência , Mitocôndrias/genética , Atrofia Óptica/genética , Nervo Óptico/patologia , Deleção de Sequência , Aconitato Hidratase/metabolismo , DNA Mitocondrial , Exoma , Feminino , Fibroblastos/patologia , Humanos , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Nervo Óptico/metabolismo
2.
Sci Transl Med ; 12(560)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908004

RESUMO

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos , Éxons/genética , Humanos , Mutação/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Splicing de RNA
3.
Antioxid Redox Signal ; 31(16): 1213-1234, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303019

RESUMO

Aims: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial shape transition, which is a prerequisite for the initiation of mitophagy. Moreover, altered Miro1 protein levels have emerged as a shared feature of monogenic and sporadic Parkinson's disease (PD), but, so far, no disease-associated variants in RHOT1 have been identified. Here, we aim to explore the genetic and functional contribution of RHOT1 mutations to PD in patient-derived cellular models. Results: For the first time, we describe heterozygous RHOT1 mutations in two PD patients (het c.815G>A; het c.1348C>T) and identified mitochondrial phenotypes with reduced mitochondrial mass in patient fibroblasts. Both mutations led to decreased endoplasmic reticulum-mitochondrial contact sites and calcium dyshomeostasis. As a consequence, energy metabolism was impaired, which in turn caused increased mitophagy. Innovation and Conclusion: Our study provides functional evidence that ROTH1 is a genetic risk factor for PD, further implicating Miro1 in calcium homeostasis and mitochondrial quality control.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Idoso , Humanos , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Mutação , Proteínas rho de Ligação ao GTP/genética
4.
Br J Cancer ; 117(6): 813-825, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28797031

RESUMO

BACKGROUND: Hypoxia is negatively associated with glioblastoma (GBM) patient survival and contributes to tumour resistance. Anti-angiogenic therapy in GBM further increases hypoxia and activates survival pathways. The aim of this study was to determine the role of hypoxia-induced autophagy in GBM. METHODS: Pharmacological inhibition of autophagy was applied in combination with bevacizumab in GBM patient-derived xenografts (PDXs). Sensitivity towards inhibitors was further tested in vitro under normoxia and hypoxia, followed by transcriptomic analysis. Genetic interference was done using ATG9A-depleted cells. RESULTS: We find that GBM cells activate autophagy as a survival mechanism to hypoxia, although basic autophagy appears active under normoxic conditions. Although single agent chloroquine treatment in vivo significantly increased survival of PDXs, the combination with bevacizumab resulted in a synergistic effect at low non-effective chloroquine dose. ATG9A was consistently induced by hypoxia, and silencing of ATG9A led to decreased proliferation in vitro and delayed tumour growth in vivo. Hypoxia-induced activation of autophagy was compromised upon ATG9A depletion. CONCLUSIONS: This work shows that inhibition of autophagy is a promising strategy against GBM and identifies ATG9 as a novel target in hypoxia-induced autophagy. Combination with hypoxia-inducing agents may provide benefit by allowing to decrease the effective dose of autophagy inhibitors.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/efeitos dos fármacos , Bevacizumab/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Cloroquina/farmacologia , Glioblastoma/tratamento farmacológico , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Hipóxia Tumoral/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Inibidores da Angiogênese/farmacologia , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/irrigação sanguínea , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Distribuição Aleatória , Esferoides Celulares/patologia , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...