Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0224081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622417

RESUMO

Steroid hormones and their respective nuclear receptors are essential mediators in numerous physiologic and pathophysiologic processes, ranging from regulation of metabolism, immune function, and reproductive processes to the development of hormone-dependent cancers such as those of the breast and prostate. Because steroids must enter cells before activating nuclear receptors, understanding the mechanisms by which cellular uptake occurs is critical, yet a clear understanding of these mechanisms has been elusive. It is generally assumed that diffusion-driven uptake is similar across various steroids whereas an elevated cellular concentration is thought to reflect active uptake, but these assumptions have not been directly tested. Here we show that intact cells rapidly accumulate free steroids to markedly elevated concentrations. This effect varies widely depending on steroid structure; more lipophilic steroids reach more elevated concentrations. Strong preferences exist for 3ß-OH, Δ5-steroids vs. 3-keto, Δ4-structural features and for progestogens vs. androgens. Surprisingly, steroid-structure-specific preferences do not require cell viability, implying a passive mechanism, and occur across cells derived from multiple tissue types. Physiologic relevance is suggested by structure-specific preferences in human prostate tissue compared with serum. On the other hand, the presence of serum proteins in vitro blocks much, but not all, of the passive accumulation, while still permitting a substantial amount of active accumulation for certain steroids. Our findings suggest that both passive and active uptake mechanisms make important contributions to the cellular steroid uptake process. The role of passive, lipophilicity-driven accumulation has previously been largely unappreciated, and its existence provides important context to studies on steroid transport and action both in vitro and in vivo.


Assuntos
Esteroides/metabolismo , Androgênios/análise , Androgênios/sangue , Androgênios/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Desidroepiandrosterona/análise , Desidroepiandrosterona/metabolismo , Humanos , Cinética , Pregnenolona/análise , Pregnenolona/metabolismo , Progesterona/análise , Progesterona/metabolismo , Progesterona/farmacologia , Esteroides/análise , Esteroides/farmacologia , Espectrometria de Massas em Tandem
2.
Bioorg Med Chem ; 25(19): 5128-5132, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28712845

RESUMO

The brain provides a sanctuary site for HIV due, in part, to poor penetration of antiretroviral agents at the blood-brain barrier. This lack of penetration is partially attributed to drug efflux transporters such as P-glycoprotein (P-gp) and ABCG2. Inhibition of both ABCG2 and P-gp is critical for enhancing drug accumulation into the brain. In this work, we have developed a class of homodimers based on the HIV reverse transcriptase inhibitor azidothymidine (AZT) that effectively inhibits P-gp and ABCG2. These agents block transporter mediated efflux of the P-gp substrate calcein-AM and the ABCG2 substrate mitoxantrone. The homodimers function by interacting with the transporter drug binding sites as demonstrated by competition studies with the photo-affinity agent and P-gp/ABCG2 substrate [125I]iodoarylazidoprazosin. As such, these dual inhibitors of both efflux transporters provide a model for the future development of delivery vehicles for antiretroviral agents to the brain.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Zidovudina/análogos & derivados , Zidovudina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antivirais/química , Antivirais/farmacologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Dimerização , Humanos , Proteínas de Neoplasias/metabolismo
3.
Mol Pharm ; 14(4): 1107-1119, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28264565

RESUMO

Many atypical antipsychotic drugs currently prescribed for the treatment of schizophrenia have limited brain penetration due to the efflux activity of ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB), including P-glycoprotein (P-gp) and ABCG2. Herein, we describe the design and synthesis of the first class of homodimeric prodrug dual inhibitors of P-gp and ABCG2. These inhibitors are based on the structure of the atypical antipsychotic drug paliperidone (Pal), a transport substrate for both transporters. We synthesized and characterized a small library of homodimeric bivalent Pal inhibitors that contain a variety of tethers joining the two monomers via ester linkages. The majority of our compounds were low micromolar to sub-micromolar inhibitors of both P-gp and ABCG2 in cells overexpressing these transporters and in immortalized human hCMEC/D3 cells that are derived from the BBB. Our most potent dual inhibitor also contained an internal disulfide bond in the tether (Pal-8SS) that allowed for rapid reversion to monomer in the presence of reducing agents or plasma esterases. To increase stability against these esterases, we further engineered Pal-8SS to contain two hindering methyl groups alpha to the carbonyl of the ester moiety within the tether. The resulting dimer, Pal-8SSMe, was also a potent dual inhibitor that remained susceptible to reducing conditions but was more resistant to breakdown in human plasma. Importantly, Pal-8SSMe both accumulated and subsequently reverted to the therapeutic Pal monomer in the reducing environment of BBB cells. Thus, these molecules serve two purposes, acting as both inhibitors of P-gp and ABCG2 at the BBB and as prodrugs, effectively delivering therapies to the brain that would otherwise be precluded.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antipsicóticos/farmacologia , Barreira Hematoencefálica/metabolismo , Proteínas de Neoplasias/metabolismo , Palmitato de Paliperidona/farmacologia , Pró-Fármacos/farmacologia , Transporte Biológico/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Células MCF-7
4.
Medchemcomm ; 7(5): 1016-1021, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27547295

RESUMO

Activating mutations of human K-Ras proteins are among the most common oncogenic mutations, present in approximately 30% of all human cancers. Posttranslational modifications to K-Ras guide it to the plasma membrane and disruption of this localization inhibits the growth of Ras-driven cancers. The human isoprenylcysteine carboxyl methyltransferase (hIcmt) enzyme catalyzes the final α-carboxyl methylesterification of the C-terminal farnesyl cysteine of K-Ras, which is necessary for its proper localization. Thus, hIcmt inhibition is a regarded as a promising cancer therapy. A high quality inhibitor of hIcmt with in vivo activity would advance hIcmt research and drug development. Herein, Wwe report the results of a screen for small molecule hIcmt inhibitors in a library of molecules that were not hIcmt substrate analogs. The lead compound identified by this screen (1) was modified to remove chemical liabilities and to increase potency. The most potent resulting compound (5) inhibited hIcmt in vitro with low micromolar potency (IC50 = 1.5 ± 0.2 µM) and was kinetically characterized as a competitive inhibitor for prenylated substrates and a non-competitive inhibitor for the cofactor and methyl donor S-adenosylmethionine (SAM). These inhibitors offer important structure activity relationships for the future development of hIcmt inhibitors with in vivo activity.

5.
ACS Chem Neurosci ; 5(4): 305-17, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24483607

RESUMO

The multidrug resistance transporter P-glycoprotein (P-gp) is highly expressed in the capillary endothelial cells of the blood-brain barrier (BBB) where it functions to limit the brain penetration of many drugs, including antipsychotic agents used to treat schizophrenia. Therefore, in an effort to inhibit the transporter, we designed dimers of the antipsychotic drug and P-gp substrate quetiapine (QT), linked by variable length tethers. In P-gp overexpressing cells and in human brain capillary endothelial hCMEC/D3 cells, the dimer with the shortest tether length (QT2C2) (1) was the most potent inhibitor showing >80-fold better inhibition of P-gp-mediated transport than monomeric QT. The dimers, which are linked via ester moieties, are designed to revert to the therapeutic monomer once inside the target cells. We demonstrated that the addition of two sterically blocking methyl groups to the linker (QT2C2Me2, 8) increased the half-life of the molecule in plasma 10-fold as compared to the dimer lacking methyl groups (QT2C2, 1), while retaining inhibitory potency for P-gp transport and sensitivity to cellular esterases. Experiments with purified P-gp demonstrated that QT2C2 (1) and QT2C2Me2 (8) interacted with both the H- and R-binding sites of the transporter with binding affinities 20- to 30-fold higher than that of monomeric QT. Using isolated rat brain capillaries, QT2C2Me2 (8) was a more potent inhibitor of P-gp transport than QT. Lastly, we showed that QT2C2Me2 (8) increased the accumulation of the P-gp substrate verapamil in rat brain in situ three times more than QT. Together, these results indicate that the QT dimer QT2C2Me2 (8) strongly inhibited P-gp transport activity in human brain capillary endothelial cells, in rat brain capillaries, and at the BBB in an animal model.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Capilares/metabolismo , Dibenzotiazepinas/química , Dibenzotiazepinas/metabolismo , Células Endoteliais/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sítios de Ligação , Células Cultivadas , Dimerização , Humanos , Ligação Proteica , Fumarato de Quetiapina
6.
ACS Chem Biol ; 9(3): 722-30, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24369685

RESUMO

Chloroquine (CQ) resistance in the human malaria parasite Plasmodium falciparum is primarily conferred by mutations in the "chloroquine resistance transporter" (PfCRT). The resistance-conferring form of PfCRT (PfCRT(CQR)) mediates CQ resistance by effluxing the drug from the parasite's digestive vacuole, the acidic compartment in which CQ exerts its antiplasmodial effect. PfCRT(CQR) can also decrease the parasite's susceptibility to other quinoline drugs, including the current antimalarials quinine and amodiaquine. Here we describe interactions between PfCRT(CQR) and a series of dimeric quinine molecules using a Xenopus laevis oocyte system for the heterologous expression of PfCRT and using an assay that detects the drug-associated efflux of H(+) ions from the digestive vacuole in parasites that harbor different forms of PfCRT. The antiplasmodial activities of dimers 1 and 6 were also examined in vitro (against drug-sensitive and drug-resistant strains of P. falciparum) and in vivo (against drug-sensitive P. berghei). Our data reveal that the quinine dimers are the most potent inhibitors of PfCRT(CQR) reported to date. Furthermore, the lead compounds (1 and 6) were not effluxed by PfCRT(CQR) from the digestive vacuole but instead accumulated to very high levels within this organelle. Both 1 and 6 exhibited in vitro antiplasmodial activities that were inversely correlated with CQ. Moreover, the additional parasiticidal effect exerted by 1 and 6 in the drug-resistant parasites was attributable, at least in part, to their ability to inhibit PfCRT(CQR). This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Quinina/farmacologia , Quinolinas/farmacologia , Animais , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Dimerização , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Estrutura Molecular , Oócitos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinina/química , Quinina/uso terapêutico , Transfecção , Xenopus laevis
7.
Protein Expr Purif ; 65(1): 83-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19095065

RESUMO

Francisella tularensis is an extremely infectious airborne pathogen that has long been considered as a potential biological weapon. Enzymes of fatty acid synthesis (FAS) pathway are attractive targets for the development of new antibacterial agents because of differences between the biosynthesis pathways of bacteria and mammals. We report here the first expression of three functional enzymes in F. tularensis FAS-II pathway: FabH (3-oxoacyl-acyl carrier protein synthase III) which initiates elongation in FAS-II; FabD (Malonyl-CoA-acyl carrier protein transacylase) which catalyzes the transfer of a malonyl moiety from malonyl-CoA to ACP generating malonyl-ACP, and FabI (enoyl-ACP reductase) which catalyzes the reduction of enoyl-acyl-ACP derivatives. The genes encoding the FabD, FabH, and FabI were custom synthesized and cloned in pET15b expression vector. Each recombinant His-tagged fusion protein was overexpressed by IPTG induction, and then purified by affinity chromatography on a Ni-NTA column. The purified FabH and FabI have been used as targets for new drug development. Screening of a class of indole-2-carboxylic acid compounds has led to the discovery of several new compounds with promising activity against F. tularensis FabH or FabI enzymes. For example, indole derivative WIUAKP-001 inhibited 80% the FabH enzyme at 40 microM with IC(50) value of 2 microM whereas WIUAKP-031 inhibited 98% the FabI enzyme at 37.5 microM with IC(50) value of 6 microM. These compounds hold great promise for future development of new indole derivatives as inhibitors of type II FAS enzymes, and as potential new treatment for tularemia.


Assuntos
Proteínas de Bactérias/biossíntese , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/biossíntese , Francisella tularensis/enzimologia , Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Armas Biológicas , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/isolamento & purificação , Francisella tularensis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...