Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 630, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005867

RESUMO

Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.


Assuntos
Astrócitos/citologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Fibrinogênio/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Astrócitos/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Transdução de Sinais
2.
Development ; 144(21): 3917-3931, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939666

RESUMO

During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2).


Assuntos
Processamento Alternativo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Córtex Cerebral/embriologia , Inibidor de Quinase Dependente de Ciclina p57/genética , Neurônios/citologia , Fator 3 de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Ciclo Celular/genética , Córtex Cerebral/citologia , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Ligação Proteica , Fator 3 de Transcrição/deficiência , Transcrição Gênica
3.
Neurogenesis (Austin) ; 3(1): e1223532, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27882335

RESUMO

The adult central nervous system (CNS) was considered a comparatively static tissue with little cell turnover. It is now well established that there is more plasticity than previously thought and that astrocytes act as neural stem/precursor cells (NSPCs) in the subventricular zone (SVZ). The discovery that these NSPCs can give rise to a limited number of new neurons, reactive astrocytes and oligodendrocytes contributing to brain repair in CNS disease, has raised hopes toward harnessing these cells for therapeutic interventions. Here, we will discuss the transcriptional control of adult NSPC differentiation into astrocytes in CNS disease focusing on the helix-loop-helix transcription factor protein family. In our recent study, we reported that elevated BMP-2 levels are translated into an increase in Id3 expression in adult NSPC subpopulations after cortical injury. Id3 then heterodimerizes with the basic helix-loop-helix transcription factor E47 and releases the E47-mediated repression of astrocyte-specific gene expression. Consequently, adult NSPCs preferentially differentiate into astrocytes. We believe that understanding the in vivo differentiation potential and the molecular underpinnings of NSPCs in the adult mammalian brain will help us to evaluate their contributions to brain repair and may lead to new concepts in treating human CNS diseases.

4.
EMBO J ; 34(22): 2804-19, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26438726

RESUMO

Adult neural stem/precursor cells (NSPCs) of the subventricular zone (SVZ) are an endogenous source for neuronal replacement in CNS disease. However, adult neurogenesis is compromised after brain injury in favor of a glial cell fate, which is mainly attributed to changes in the NSPC environment. Yet, it is unknown how this unfavorable extracellular environment translates into a transcriptional program altering NSPC differentiation. Here, we show that genetic depletion of the transcriptional regulator Id3 decreased the number of astrocytes generated from SVZ-derived adult NSPCs in the cortical lesion area after traumatic brain injury. Cortical brain injury resulted in rapid BMP-2 and Id3 up-regulation in the SVZ stem cell niche. Id3(-/-) adult NSPCs failed to differentiate into BMP-2-induced astrocytes, while NSPCs deficient for the Id3-controlled transcription factor E47 readily differentiated into astrocytes in the absence of BMP-2. Mechanistically, E47 repressed the expression of several astrocyte-specific genes in adult NSPCs. These results identify Id3 as the BMP-2-induced transcriptional regulator, promoting adult NSPC differentiation into astrocytes upon CNS injury and reveal a molecular link between environmental changes and NSPC differentiation in the CNS after injury.


Assuntos
Células-Tronco Adultas/metabolismo , Astrócitos/metabolismo , Diferenciação Celular , Proteínas Inibidoras de Diferenciação/metabolismo , Células-Tronco Neurais/metabolismo , Fator 3 de Transcrição/metabolismo , Células-Tronco Adultas/patologia , Animais , Astrócitos/patologia , Proteína Morfogenética Óssea 2/biossíntese , Proteína Morfogenética Óssea 2/genética , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Córtex Cerebral/lesões , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas Inibidoras de Diferenciação/genética , Camundongos , Camundongos Knockout , Células-Tronco Neurais/patologia , Fator 3 de Transcrição/genética , Regulação para Cima
5.
J Vis Exp ; (71)2013 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-23380713

RESUMO

Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.


Assuntos
Astrócitos/citologia , Córtex Cerebral/citologia , Técnicas Citológicas/métodos , Animais , Camundongos , Microglia/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...