Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 619-620: 842-853, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29734630

RESUMO

We investigate denitrification mechanisms through batch experiments using crushed rock and groundwater from a granitic aquifer subject to long term pumping (Ploemeur, France). Except for sterilized experiments, extensive denitrification reaction induces NO3 decreases ranging from 0.3 to 0.6mmol/L. Carbon concentrations, either organic or inorganic, remain relatively stable and do not document potential heterotrophic denitrification. Batch experiments show a clear effect of mineral dissolution which is documented through cation (K, Na, Ca) and Fluoride production. These productions are tightly related to denitrification progress during the experiment. Conversely, limited amounts of SO4, systematically lower than autotrophic denitrification coupled to sulfur oxidation stoichiometry, are produced during the experiments which indicates that sulfur oxidation is not likely even when pyrite is added to the experiments. Analysis of cation ratios, both in isolated minerals of the granite and within water of the batch, allow the mineral dissolution during the experiments to be quantified. Using cation ratios, we show that batch experiments are characterized mainly by biotite dissolution. As biotite contains 21 to 30% of Fe and 0.3 to 1.7% of F, it constitutes a potential source for these two elements. Denitrification could be attributed to the oxidation of Fe(II) contained in biotite. We computed the amount of K and F produced through biotite dissolution when entirely attributing denitrification to biotite dissolution. Computed amounts show that this process may account for the observed K and F produced. We interpret these results as the development of microbial activity which induces mineral dissolution in order to uptake Fe(II) which is used for denitrification. Although pyrite is probably available, SO4 and cation measurements favor a large biotite dissolution reaction which could account for all the observed Fe production. Chemical composition of groundwater produced from the Ploemeur site indicates similar denitrification processes although original composition shows mainly plagioclase dissolution.

2.
Water Sci Technol ; 77(1-2): 479-492, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29377832

RESUMO

Wastewater generated on a global scale has become a significant source of water resources which necessitates appropriate management strategies. However, the complexities associated with wastewater are lack of economically viable treatment systems, especially in low- and middle-income countries. While many types of treatment systems are needed to serve the various local issues, we propose natural treatment systems (NTS) such as natural wetlands that are eco-friendly, cost-effective, and can be jointly driven by public bodies and communities. In order for it to be part of wastewater management, this study explores the NTS potential for removal of pollutants, cost-effectiveness, and reuse options for the 1.20 million m3/day of wastewater generated in Hyderabad, India. The pilot study includes hydro-geophysical characterization of natural wetland to determine pollutant removal efficiency and its effective utilization for treated wastewater in the peri-urban habitat. The results show the removal of organic content (76-78%), nutrients (77-97%), and microbes (99.5-99.9%) from the wetland-treated wastewater and its suitability for agriculture applications. Furthermore, the wetland efficiency integrated with engineered interventions led to the development of NTS models with different application scenarios: (i) constructed wetlands, (ii) minimized community wetlands, and (iii) single outlet system, suitable for urban, peri-urban and rural areas, respectively.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos , Áreas Alagadas , Índia , Modelos Teóricos , Projetos Piloto , Eliminação de Resíduos Líquidos/economia , Purificação da Água/economia
3.
Sci Total Environ ; 619-620: 491-503, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156269

RESUMO

We investigated the mixing and dynamic of denitrification processes induced by long-term pumping in the crystalline aquifer of Ploemeur (Brittany, France). Hydrological and geochemical parameters have been continuously recorded over 15 boreholes in 5km2 on a 25-year period. This extensive spatial and temporal monitoring of conservative as well as reactive compounds is a key opportunity to identify aquifer-scale transport and reactive processes in crystalline aquifers. Time series analysis of the conservative elements recorded at the pumped well were used to determine mixing fractions from different compartments of the aquifer on the basis of a Principal Component Analysis approach coupled with an end-member mixing analysis. We could reveal that pumping thus induces a thorough reorganization of fluxes known as capture, favoring infiltration and vertical fluxes in the recharge zone, and upwelling of deep and distant water at long-term time scales. These mixing fractions were then used to quantify the extent of denitrification linked to pumping. Based on the results from batch experiments described in a companion paper, our computations revealed that i) autotrophic denitrification processes are dominant in this context where carbon sources are limited, that ii) nitrate reduction does not only come from the oxidation of pyrite as classically described in previous studies analyzing denitrification processes in similar contexts, and that iii) biotite plays a critical role in sustaining the nitrate reduction process. Both nitrate reduction, sulfate production as well as fluor release ratios support the hypothesis that biotite plays a key role of electron donor in this context. The batch-to-site similarities support biotite availability and the role by bacterial communities as key controls of nitrate removal in such crystalline aquifers. However, the long term data monitoring also indicates that mixing and reactive processes evolve extremely slowly at the scale of the decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA