Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(14): 6335-6348, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530925

RESUMO

Fecal bacteria in surface water may indicate threats to human health. Our hypothesis is that village settlements in tropical rural areas are major hotspots of fecal contamination because of the number of domestic animals usually roaming in the alleys and the lack of fecal matter treatment before entering the river network. By jointly monitoring the dynamics of Escherichia coli and of seven stanol compounds during four flood events (July-August 2016) at the outlet of a ditch draining sewage and surface runoff out of a village of Northern Lao PDR, our objectives were (1) to assess the range of E. coli concentration in the surface runoff washing off from a village settlement and (2) to identify the major contributory sources of fecal contamination using stanol compounds during flood events. E. coli pulses ranged from 4.7 × 104 to 3.2 × 106 most probable number (MPN) 100 mL-1, with particle-attached E. coli ranging from 83 to 100%. Major contributory feces sources were chickens and humans (about 66 and 29%, respectively), with the highest percentage switching from the human pole to the chicken pole during flood events. Concentrations indicate a severe fecal contamination of surface water during flood events and suggest that villages may be considered as major hotspots of fecal contamination pulses into the river network and thus as point sources in hydrological models.


Assuntos
Monitoramento Ambiental , Escherichia coli , Humanos , Animais , Microbiologia da Água , Galinhas , Poluição da Água , Água , Fezes
2.
Sci Rep ; 12(1): 8674, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606475

RESUMO

The environmental distribution of Burkholderia pseudomallei, the causative agent of melioidosis, remains poorly understood. B. pseudomallei is known to have the ability to occupy a variety of environmental niches, particularly in soil. This paper provides novel information about a putative association of soil biogeochemical heterogeneity and the vertical distribution of B. pseudomallei. We investigated (1) the distribution of B. pseudomallei along a 300-cm deep soil profile together with the variation of a range of soil physico-chemical properties; (2) whether correlations between the distribution of B. pseudomallei and soil physico-chemical properties exist and (3) when they exist, what such correlations indicate with regards to the environmental conditions conducive to the occurrence of B. pseudomallei in soils. Unexpectedly, the highest concentrations of B. pseudomallei were observed between 100 and 200 cm below the soil surface. Our results indicate that unravelling the environmental conditions favorable to B. pseudomallei entails considering many aspects of the actual complexity of soil. Important recommendations regarding environmental sampling for B. pseudomallei can be drawn from this work, in particular that collecting samples down to the water table is of foremost importance, as groundwater persistence appears to be a controlling factor of the occurrence of B. pseudomallei in soil.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/epidemiologia , Solo , Microbiologia do Solo , Manejo de Espécimes
3.
Sci Rep ; 11(1): 3460, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568764

RESUMO

In the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. Our objectives were to (1) investigate the seasonality of fecal contamination using Escherichia coli as fecal indicator bacteria (FIB), and (2) establish links between the fecal contamination in stream water and its controlling factors (hydrology and land use). We present the results of (1) a sampling campaign at the outlet of 19 catchments across Lao PDR, in both the dry and the rainy seasons of 2016, and (2) a 10-day interval monitoring conducted in 2017 and 2018 at three point locations of three rivers (Nam Ou, Nam Suang, and Mekong) in northern Lao PDR. Our results show the presence of fecal contamination at most of the sampled sites, with a seasonality characterized by higher and extreme E. coli concentrations occurring during the rainy season. The highest E. coli concentrations, strongly correlated with total suspended sediment concentrations, were measured in catchments dominated by unstocked forest areas, especially in mountainous northern Lao PDR and in Vientiane province.

4.
Environ Monit Assess ; 192(8): 510, 2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32656600

RESUMO

An elevated nitrogen concentration in water is one of the main problems affecting water quality in Mediterranean rivers. The objectives of this study were (1) to evaluate the contribution of the Tafna catchment to the nitrate load entering the Mediterranean Sea, (2) to quantify the impact of agriculture on the nitrate concentration in water bodies, (3) to evaluate nitrate loads entering groundwater, and (4) to quantify the role of reservoirs in nitrate retention. A SWAT model was applied during the period 2003 to 2011. The discharge calibration was based on a previous study by Zettam et al. (2017). NSE efficiencies ranged from 0.421 to 0.75, R2 ranged from 0.25 to 0.84, and PBIAS ranged from 3.68 to 39.42. The simulations of monthly nitrate loads were satisfactory in the upstream sampling stations, with NSE between 0.48 and 0.65 and R2 between 0.63 and 0.68. The PBIAS was satisfactory in all the sampling stations (- 36.30 to 10.42). In the downstream sampling stations, the calibration of the monthly nitrate loads was unsatisfactory (NSE ranged from - 0.26 to 0.21 and R2 ranged from 0.02 to 0.25). Fertilisation was the main N input in the catchment, while the main N output was plant uptake. The Tafna River carried an annual average of 37 to 85.5 t N year-1 into the Mediterranean Sea. The simulation also showed that reservoirs in the Tafna basin contain a large quantity of nitrates, i.e. 62% on average of the total amount of nitrates transported annually by the Tafna River.


Assuntos
Nitratos/análise , Poluentes Químicos da Água/análise , África do Norte , África Ocidental , Agricultura , Monitoramento Ambiental , Mar Mediterrâneo
5.
J Environ Qual ; 47(5): 1115-1122, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272793

RESUMO

Land use change from annual crops to commercial tree plantations can modify flow and transport processes at the watershed scale, including the fate and transport of fecal indicator bacteria (FIB), such as . The Soil and Water Assessment Tool (SWAT) is a useful means for integrating watershed characteristics and simulating water and contaminants. The objective of this study was to provide a comprehensive assessment of the impact of land use change on microbial transfer from soils to streams using the SWAT model. This study was conducted for the Houay Pano watershed located in northern Lao People's Democratic Republic. Under the observed weather conditions, the SWAT model predicted a decrease from 2011 to 2012 and an increase from 2012 to 2013 in surface runoff, suspended solids, and transferred from the soil surface to streams. The amount of precipitation was important in simulating surface runoff, and it subsequently affected the fate and transport of suspended solids and bacteria. In simulations of identical weather conditions and different land uses, fate and transport was more sensitive to the initial number of than to its drivers (i.e., surface runoff and suspended solids), and leaf area index was a significant factor influencing the determination of the initial number of on the soil surface. On the basis of these findings, this study identifies several limitations of the SWAT fertilizer and bacteria modules and suggests measures to improve our understanding of the impacts of land use change on FIB in tropical watersheds.


Assuntos
Solo , Água , Bactérias , Modelos Teóricos , Rios
6.
Water Res ; 119: 102-113, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436821

RESUMO

The occurrence of pathogen bacteria in surface waters is a threat to public health worldwide. In particular, inadequate sanitation resulting in high contamination of surface water with pathogens of fecal origin is a serious issue in developing countries such as Lao P.D.R. Despite the health implications of the consumption of contaminated surface water, the environmental fate and transport of pathogens of fecal origin and their indicators (Fecal Indicator Bacteria or FIB) are still poorly known in tropical areas. In this study, we used measurements of flow rates, suspended sediments and of the FIB Escherichia coli (E. coli) in a 60-ha catchment in Northern Laos to explore the ability of the Soil and Water Assessment Tool (SWAT) to simulate watershed-scale FIB fate and transport. We assessed the influences of 3 in-stream processes, namely bacteria deposition and resuspension, bacterial regrowth, and hyporheic exchange (i.e. transient storage) on predicted FIB numbers. We showed that the SWAT model in its original version does not correctly simulate small E. coli numbers during the dry season. We showed that model's performance could be improved when considering the release of E. coli together with sediment resuspension. We demonstrated that the hyporheic exchange of bacteria across the Sediment-Water Interface (SWI) should be considered when simulating FIB concentration not only during wet weather, but also during the dry season, or baseflow period. In contrast, the implementation of the regrowth process did not improve the model during the dry season without inducing an overestimation during the wet season. This work thus underlines the importance of taking into account in-stream processes, such as deposition and resuspension, regrowth and hyporheic exchange, when using SWAT to simulate FIB dynamics in surface waters.


Assuntos
Fezes , Microbiologia da Água , Bactérias , Monitoramento Ambiental , Escherichia coli , Laos , Clima Tropical
7.
PLoS Negl Trop Dis ; 10(12): e0005195, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27935960

RESUMO

BACKGROUND: The global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. To our knowledge, few studies have related diarrhea incidences to catchment scale hydrological factors such as river discharge, and loads of suspended sediment and of Fecal Indicator Bacteria (FIB) such as Escherichia coli, together with sociological factors such as hygiene practices. We hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and FIB counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. Using E. coli as a FIB, the objectives of this study were thus (1) to characterize the epidemiological dynamics of diarrhea in Northern Laos, and (2) to identify which hydro-meteorological and sociological risk factors were associated with diarrhea epidemics. METHODS: Considering two unconnected river catchments of 22 and 7,448 km2, respectively, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature), and the number of diarrheal disease cases reported at 6 health centers located in the 5 southern districts of the Luang Prabang Province, Lao PDR. We also examined the socio-demographic factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources, hygiene habits, and recreational water exposure. RESULTS: Using thus a mixed methods approach, we found E. coli to be present all year long (100-1,000 Most Probable Number or MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0-4 age group and male patients. CONCLUSIONS: We found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement.


Assuntos
Diarreia/epidemiologia , Fezes/microbiologia , Estações do Ano , Microbiologia da Água , Abastecimento de Água , Água , Centros Comunitários de Saúde , Demografia , Diarreia/microbiologia , Diarreia/prevenção & controle , Epidemias , Escherichia coli/isolamento & purificação , Feminino , Humanos , Higiene , Laos/epidemiologia , Masculino , Chuva , Estudos Retrospectivos , Rios/microbiologia , Clima Tropical
8.
Sci Rep ; 6: 32974, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604854

RESUMO

Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.


Assuntos
Escherichia coli/isolamento & purificação , Rios/microbiologia , Agricultura , Animais , Carga Bacteriana , Países em Desenvolvimento , Monitoramento Ambiental , Fezes/microbiologia , Humanos , Umidade , Hidrologia , Laos , Chuva , Estações do Ano , Tailândia , Clima Tropical , Vietnã , Microbiologia da Água , Abastecimento de Água
9.
Sci Total Environ ; 543(Pt A): 683-690, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26615486

RESUMO

Ecosystem services provide multiple benefits to human wellbeing and are increasingly considered by policy-makers in environmental management. However, the uncertainty related with the monetary valuation of these benefits is not yet adequately defined or integrated by policy-makers. Given this background, our aim was to quantify different sources of uncertainty when performing monetary valuation of ecosystem services, in order to provide a series of guidelines to reduce them. With an example of 4 ecosystem services (i.e., water provisioning, waste treatment, erosion protection, and habitat for species) provided at the river basin scale, we quantified the uncertainty associated with the following sources: (1) the number of services considered, (2) the number of benefits considered for each service, (3) the valuation metrics (i.e. valuation methods) used to value benefits, and (4) the uncertainty of the parameters included in the valuation metrics. Results indicate that the highest uncertainty was caused by the number of services considered, as well as by the number of benefits considered for each service, whereas the parametric uncertainty was similar to the one related to the selection of valuation metric, thus suggesting that the parametric uncertainty, which is the only uncertainty type commonly considered, was less critical than the structural uncertainty, which is in turn mainly dependent on the decision-making context. Given the uncertainty associated to the valuation structure, special attention should be given to the selection of services, benefits and metrics according to a given context.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Rios , Tomada de Decisões , Política Ambiental , Incerteza
10.
Chemosphere ; 99: 134-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24275149

RESUMO

Pesticides applied on crops are leached with rainfall to groundwater and surface water. They threat the aquatic environment and may render water unfit for human consumption. Pesticide partitioning is one of the pesticide fate processes in the environment that should be properly formalised in pesticide fate models. Based on the analysis of 7 pesticide molecules (alachlor, atrazine, atrazine's transformation product deethylatrazine or DEA, isoproturon, tebuconazole and trifluralin) sampled from July 2009 to October 2010 at the outlet of the river Save (south-western France), the objectives of this study were (1) to check which of the environmental factors (discharge, pH, concentrations of total suspended matter (TSM), dissolved organic carbon (DOC) and particulate organic carbon (POC) could control the pesticide sorption dynamic, and (2) to establish a relationship between environmental factors, the partition coefficient Kd and the octanol/water distribution coefficient Kow. The comparison of physico-chemical parameters values during low flow and high flow shows that discharge, TSM and POC are the factors most likely controlling the pesticide sorption processes in the Save river network, especially for lower values of TSM (below 13mgL(-1)). We therefore express Kd depending on the widely literature-related variable Kow and on the commonly simulated variable TSM concentration. The equation can be implemented in any model describing the fluvial transport and fate of pesticides in both dissolved and sorbed phases, thus, Kd becomes a variable in time and space. The Kd calculation method can be applied to a wide range of catchments and organic contaminants.


Assuntos
Agricultura , Modelos Químicos , Praguicidas/química , Movimentos da Água , Poluentes Químicos da Água/química , Monitoramento Ambiental , França , Humanos , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 470-471: 567-77, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176705

RESUMO

Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning.


Assuntos
Conservação dos Recursos Naturais/métodos , Abastecimento de Água/estatística & dados numéricos , Mudança Climática , Região do Mediterrâneo , Espanha , Movimentos da Água
12.
J Environ Qual ; 43(1): 46-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602539

RESUMO

High nitrate concentrations in streams have become a widespread problem throughout Europe in recent decades, damaging surface water and groundwater quality. The European Nitrate Directive fixed a potability threshold of 50 mg L for European rivers. The performance of the Soil and Water Assessment Tool model was assessed in the 1110-km Save catchment in southwestern France for predicting water discharge and nitrate loads and concentrations at the catchment outlet, considering observed data set uncertainty. Simulated values were compared with intensive and extensive measurement data sets. Daily discharge fitted observations (Nash-Sutcliffe efficiency coefficient = 0.61, = 0.7, and PBIAS = -22%). Nitrate simulation (1998-2010) was within the observed range (PBIAS = 10-21%, considering observed data set uncertainty). Annual nitrate load at the catchment outlet was correlated to the annual water yield at the outlet ( = 0.63). Simulated annual catchment nitrate exportation ranged from 21 to 49 kg ha depending on annual hydrological conditions (average, 36 kg ha). Exportation rates ranged from 3 to 8% of nitrogen inputs. During floods, 34% of the nitrate load was exported, which represented 18% of the 1998-2010 period. Average daily nitrate concentration at the outlet was 29 mg L (1998-2010), ranging from 0 to 270 mg L. Nitrate concentration exceeded the European 50 mg L potability threshold during 244 d between 1998 and 2010. A 20% reduction of nitrogen input reduced crop yield by between 5 and 9% and reduced by 62% the days when the 50 mg L threshold was exceeded.

13.
J Hazard Mater ; 196: 210-9, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21945686

RESUMO

Rising pesticide levels in streams draining intensively managed agricultural land have a detrimental effect on aquatic ecosystems and render water unfit for human consumption. The Soil and Water Assessment Tool (SWAT) was applied to simulate daily pesticide transfer at the outlet from an agriculturally intensive catchment of 1110 km(2) (Save river, south-western France). SWAT reliably simulated both dissolved and sorbed metolachlor and trifluralin loads and concentrations at the catchment outlet from 1998 to 2009. On average, 17 kg of metolachlor and 1 kg of trifluralin were exported at outlet each year, with annual rainfall variations considered. Surface runoff was identified as the preferred pathway for pesticide transfer, related to the good correlation between suspended sediment exportation and pesticide, in both soluble and sorbed phases. Pesticide exportation rates at catchment outlet were less than 0.1% of the applied amount. At outlet, SWAT hindcasted that (i) 61% of metolachlor and 52% of trifluralin were exported during high flows and (ii) metolachlor and trifluralin concentrations exceeded European drinking water standards of 0.1 µg L(-1) for individual pesticides during 149 (3.6%) and 17 (0.4%) days of the 1998-2009 period respectively. SWAT was shown to be a promising tool for assessing large catchment river network pesticide contamination in the event of floods but further useful developments of pesticide transfers and partition coefficient processes would need to be investigated.


Assuntos
Acetamidas/análise , Inundações , Rios/química , Trifluralina/análise , Poluentes Químicos da Água/análise , Agricultura , Área Programática de Saúde , Monitoramento Ambiental , França , Modelos Teóricos , Estações do Ano , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...