Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Instrum Technol ; 35(2): 104-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11383307

RESUMO

An energy-efficient lighting retrofit at the Food and Drug Administration (FDA) Winchester Engineering and Analytical Center (WEAC) presented the opportunity to measure the electromagnetic (EM) environments in several rooms before and after changing the fluorescent lighting systems and to compare the changes in EM fields with the proposed standard EM immunity levels. Three rooms, representing the types of work areas in the laboratory, were selected and measured before and after the lighting changeover. Electric and magnetic field measurements were taken in the extremely low frequency (ELF), very low frequency (VLF), and radio frequency (RF) ranges of the EM spectrum. In 2 rooms, ELF electric fields were reduced and VLF and RF electric fields were increased as a result of the changeover to high-frequency fixtures. A third room received low-frequency, energy-efficient fixtures during this changeover, and this change resulted in only a slight increase of the ELF electric fields. The ELF magnetic fields were greatly reduced in 2 but only slightly reduced in the third room. No significant change was seen in VLF or RF magnetic fields for any of these rooms. Some field-strength measurements exceeded the proposed immunity levels recommended in the draft International Electrotechnical Commission standard IEC 60601-1-2 (rev. 2). The data show that increasing the separation distance from the fluorescent light fixtures greatly reduces the field-strength levels, limiting the potential for EM interference.


Assuntos
Campos Eletromagnéticos , Iluminação , Humanos , Serviço Hospitalar de Engenharia e Manutenção
2.
Biomed Instrum Technol ; 31(2): 145-54, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9099436

RESUMO

Electromagnetic interference (EMI) with medical devices can threaten patient safety. More information is needed regarding circumstances in health care environments in which electromagnetic (EM) field strengths are expected to be high, such as emergency/transport. In ambulances medical devices and communications equipment must function properly in close proximity. This study characterized EM fields in and around ambulances under realistic conditions. Two types of ambulances were surveyed: the advanced life support (ALS) unit and the basic life support (BLS) unit. The surveys were conducted on-site using the ambulance mobile radio as the primary source of EM energy. Broadband field-strength measurements were collected at various locations in and around the ambulance to map interior and exterior EM field distributions. Nine ambulances were surveyed. In addition to the transmitter power and frequency, the field strengths measured were shown to be dependent upon the shielding provided by the ambulance roof and proximity of the measurement probe to the antenna. Field-strength measurements frequently exceeded the 3 V/m standard immunity level for devices set by the IEC Standard 601-1-2. The results indicate that the ambulance environment presents a considerable challenge to medical devices specifically used for emergency medical care. In order to assure their proper operation, medical devices used for transport emergency care must be able to withstand exposure to EM field strengths comparable to those reported in this study.


Assuntos
Ambulâncias , Campos Eletromagnéticos , Exposição Ambiental , Monitoramento Ambiental/métodos , Comunicação , Eletrônica , Equipamentos e Provisões , Humanos , Ondas de Rádio , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...