Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Xenobiotica ; 53(5): 412-420, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37432873

RESUMO

Morpholine (MOR) has a broad spectrum of use and represents high risk of human exposure. Ingested MOR can undergo endogenous N-nitrosation in the presence of nitrosating agents forming N-nitrosomorpholine (NMOR), classified as possible human carcinogen by the International Agency for Research on Cancer.In this study, we evaluated the MOR toxicokinetics in six groups of male Sprague-Dawley rats orally exposed to 14C-radiolabelled MOR and NaNO2. The major urinary metabolite of MOR, N-nitrosohydroxyethylglycine (NHEG), was measured through HPLC as an index of endogenous N-nitrosation. Mass balance and toxicokinetic profile of MOR were determined by measuring radioactivity in blood/plasma and excreta.MOR reached maximum blood concentration 30 minutes after administration. Elimination rate was rapid (70% in 8h). Most of the radioactivity was excreted in the urine (80.9 ± 0.5%) and unchanged 14C-MOR was the main compound excreted in the urine (84% of the dose recovered). 5.8% of MOR is not absorbed and/or was not recovered.Endogenous nitrosation of MOR was demonstrated by the detection of NHEG. The maximum conversion rate found was 13.3 ± 1.2% and seems to be impacted by the MOR/NaNO2 ratio.These results help refining our knowledge of the endogenous production of NMOR, a possible human carcinogen.

2.
Toxicol Lett ; 201(1): 8-14, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21134426

RESUMO

Predictive toxicology aims at developing methodologies to relate the results obtained from in vitro experiments to in vivo exposure. In the case of polycyclic aromatic hydrocarbons (PAHs), a substantial amount of knowledge on effects and modes of action has been recently obtained from in vitro studies of gene expression. In the current study, we built a physiologically based toxicokinetic (PBTK) model to relate in vivo and in vitro gene expression in case of exposure to benzo(a)pyrene (BaP), a referent PAH. This model was calibrated with two toxicokinetic datasets obtained on rats exposed either through intratracheal instillation or through intravenous administration and on an in vitro degradation study. A good agreement was obtained between the model's predictions and the concentrations measured in target organs, such as liver and lungs. Our model was able to relate correctly the gene expression for two genes targeted by PAHs, measured in vitro on primary human macrophages and in vivo in rat macrophages after exposure to BaP. Combining in vitro studies and PBTK modeling is promising for PAH risk assessment, especially for mixtures which are more efficiently studied in vitro than in vivo.


Assuntos
Benzo(a)pireno/toxicidade , Macrófagos/efeitos dos fármacos , Animais , Benzo(a)pireno/farmacocinética , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Modelos Biológicos , Farmacocinética , Ratos , Ratos Sprague-Dawley
3.
Toxicol Sci ; 114(2): 247-59, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20064835

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed immunotoxic and carcinogenic environmental contaminants, known to affect macrophages. In order to identify their molecular targets in such cells, we have analyzed gene expression profile of primary human macrophages treated by the prototypical PAH benzo(a)pyrene (BaP), using pangenomic oligonucleotides microarrays. Exposure of macrophages to BaP for 8 and 24 h resulted in 96 and 1100 genes, differentially expressed by at least a twofold change factor, respectively. Some of these targets, including the chemokine receptor CXCR5, the G protein-coupled receptor 35 (GPR35), and the Ras regulator RASAL1, have not been previously shown to be affected by PAHs, in contrast to others, such as interleukin-1beta and the aryl hydrocarbon receptor (AhR) repressor. These BaP-mediated gene regulations were fully validated by reverse transcription-quantitative polymerase chain reaction assays for some selected genes. Their bioinformatic analysis indicated that biological functions linked to immunity, inflammation, and cell death were among the most affected by BaP in human macrophages and that the AhR and p53 signaling pathways were the most significant canonical pathways activated by the PAH. AhR and p53 implications were moreover fully confirmed by the prevention of BaP-related upregulation of some selected target genes by AhR silencing or the use of pifithrin-alpha, an inhibitor of PAH bioactivation-related DNA damage/p53 pathways. Overall, these data, through identifying genes and signaling pathways targeted by PAHs in human macrophages, may contribute to better understand the molecular basis of the immunotoxicity of these environmental contaminants.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inativação Gênica , Humanos , Sistema Imunitário/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética , Inflamação/induzido quimicamente , Inflamação/genética , Interleucina-8/metabolismo , Macrófagos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA