Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108826, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322997

RESUMO

Novel solutions are needed to reduce the risk of transmission of extended spectrum ß-lactamase (ESBL) and AmpC ß-lactamase producing Escherichia coli (ESBL/AmpC E. coli) from livestock to humans. Given that phages are promising biocontrol agents, a collection of 28 phages that infect ESBL/AmpC E. coli were established. Whole genome sequencing showed that all these phages were unique and could be assigned to 15 different genera. Host range analysis showed that 82% of 198 strains, representing the genetic diversity of ESBL/AmpC E. coli, were sensitive to at least one phage. Identifying receptors used for phage binding experimentally as well as in silico predictions, allowed us to combine phages into two different cocktails with broad host range targeting diverse receptors. These phage cocktails efficiently inhibit the growth of ESBL/AmpC E. coli in vitro, thus suggesting the potential of phages as promising biocontrol agents.

2.
Access Microbiol ; 5(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424547

RESUMO

Prophages of the ΦSa3int family are commonly found in human-associated strains of Staphylococcus aureus where they encode factors for evading the human innate immune system. In contrast, they are usually absent in livestock-associated methicillin-resistant S. aureus (LA-MRSA) strains where the phage attachment site is mutated compared to the human strains. However, ΦSa3int phages have been found in a subset of LA-MRSA strains belonging to clonal complex 398 (CC398), including a lineage that is widespread in pig farms in Northern Jutland, Denmark. This lineage contains amino acid changes in the DNA topoisomerase IV and the DNA gyrase encoded by grlA and gyrA, respectively, which have been associated with fluoroquinolone (FQ) resistance. As both of these enzymes are involved in DNA supercoiling, we speculated that the mutations might impact recombination between the ΦSa3int phage and the bacterial chromosome. To examine this, we introduced the FQ resistance mutations into S. aureus 8325-4attBLA that carry the mutated CC398-like bacterial attachment site for ΦSa3int phages. When monitoring phage integration and release of Φ13, a well-described representative of the ΦSa3int phage family, we did not observe any significant differences between the FQ-resistant mutant and the wild-type strain. Thus our results suggest that mutations in grlA and gyrA do not contribute to the presence of the ΦSa3int phages in LA-MRSA CC398.

3.
J Am Chem Soc ; 143(28): 10514-10518, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34228933

RESUMO

Group behavior in many bacteria relies on chemically induced communication called quorum sensing (QS), which plays important roles in the regulation of colonization, biofilm formation, and virulence. In Gram-positive bacteria, QS is often mediated by cyclic ribosomally synthesized and posttranslationally modified peptides (RiPPs). In staphylococci, for example, most of these so-called autoinducing peptides (AIPs) contain a conserved thiolactone functionality, which has also been predicted to constitute a structural feature of AIPs from other genera. Here, we show that pentameric AIPs from Lactiplantibacillus plantarum, Clostridium perfringens, and Listeria monocytogenes that were previously presumed to be thiolactone-containing structures readily rearrange to become homodetic cyclopeptides. This finding has implications for the developing understanding of cross-species and potential cross-genus communication of bacteria and may help guide the discovery of peptide ligands to perturb their function.


Assuntos
Depsipeptídeos/metabolismo , Bactérias Gram-Positivas/metabolismo , Compostos de Sulfidrila/metabolismo , Depsipeptídeos/química , Bactérias Gram-Positivas/química , Percepção de Quorum , Compostos de Sulfidrila/química
4.
Front Microbiol ; 11: 573253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240231

RESUMO

Staphylococcus aureus is a human pathogen that can cause chronic and recurrent infections and is recalcitrant to antibiotic chemotherapy. This trait is partly attributed to its ability to form persister cells, which are subpopulations of cells that are tolerant to lethal concentrations of antibiotics. Recently, we showed that the phenol-soluble modulins (PSMs) expressed by S. aureus reduce persister cell formation. PSMs are a versatile group of toxins that, in addition to toxicity, form amyloid-like fibrils thought to support biofilm structures. Here, we examined individual or combined synthetic PSMα peptides and their equivalent amyloid-like fibrils on ciprofloxacin-selected S. aureus persister cells. We found that PSMα2 and the mixture of all four alpha peptides consistently were able to reduce persister frequency in all growth phases, and this activity was specifically linked to the presence of the soluble peptide as no effect was seen with fibrillated peptides. Persister reduction was particularly striking in a mutant that, due to mutations in the Krebs cycle, has enhanced ability to form persisters with PSMα4 and the combination of peptides being most effective. In biofilms, only the combination of peptides displayed persister reducing activity. Collectively, we report the individual contributions of PSMα peptides to persister cell reduction and that the combination of peptides generally was most effective. Strikingly, the fibrillated peptides lost activity and thus, if formed in bacterial cultures, they will be inactive against persister cells. Further studies will be needed to address the biological role of phenol-soluble modulins in reducing persister cells.

5.
Curr Genet ; 66(3): 495-499, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31925496

RESUMO

In all living organisms, genome replication and cell division must be coordinated to produce viable offspring. In the event of DNA damage, bacterial cells employ the SOS response to simultaneously express damage repair systems and halt cell division. Extensive characterization of SOS-controlled cell division inhibition in Escherichia coli has laid the ground for a long-standing paradigm where the cytosolic SulA protein inhibits polymerization of the central division protein, FtsZ, and thereby prevents recruitment of the division machinery at the future division site. Within the last decade, it has become clear that another, likely more general, paradigm exists, at least within the broad group of Gram-positive bacterial species, namely membrane-localized, SOS-induced cell division inhibition. We recently identified such an inhibitor in Staphylococci, SosA, and established a model for SosA-mediated cell division inhibition in Staphylococcus aureus in response to DNA damage. SosA arrests cell division subsequent to the septal localization of FtsZ and later membrane-bound division proteins, while preventing progression to septum closure, leading to synchronization of cells at this particular stage. A membrane-associated protease, CtpA negatively regulates SosA activity and likely allows growth to resume once conditions are favorable. Here, we provide a brief summary of our findings in the context of what already is known for other membrane cell division inhibitors and we emphasize how poorly characterized these intriguing processes are mechanistically. Furthermore, we put some perspective on the relevance of our findings and future developments within the field.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Resposta SOS em Genética , Proteínas Son Of Sevenless/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Divisão Celular , Proteínas Son Of Sevenless/genética , Staphylococcus/genética , Staphylococcus/metabolismo
6.
Front Microbiol ; 10: 2212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611856

RESUMO

Staphylococcus aureus is a commensal colonizer of both humans and animals, but also an opportunistic pathogen responsible for a multitude of diseases. In recent years, colonization of pigs by methicillin resistant S. aureus has become a problem with increasing numbers of humans being infected by livestock strains. In S. aureus colonization and virulence factor expression is controlled by the agr quorum sensing system, which responds to and is activated by self-generated, autoinducing peptides (AIPs). AIPs are also produced by coagulase negative staphylococci (CoNS) commonly found as commensals in both humans and animals, and interestingly, some of these inhibit S. aureus agr activity. Here, we have addressed if cross-communication occurs between S. aureus and CoNS strains isolated from pig nares, and if so, how properties such as host factor binding and biofilm formation are affected. From 25 pig nasal swabs we obtained 54 staphylococcal CoNS isolates belonging to 8 different species. Of these, none were able to induce S. aureus agr as monitored by reporter gene fusions to agr regulated genes but a number of agr-inhibiting species were identified including Staphylococcus hyicus, Staphylococcus simulans, Staphylococcus arlettae, Staphylococcus lentus, and Staphylococcus chromogenes. After establishing that the inhibitory activity was mediated via AgrC, the receptor of AIPs, we synthesized selective AIPs to explore their effect on adhesion of S. aureus to fibronectin, a host factor involved in S. aureus colonization. Here, we found that the CoNS AIPs did not affect adhesion of S. aureus except for strain 8325-4. When individual CoNS strains were co-cultured together with S. aureus we observed variable degrees of biofilm formation which did not correlate with agr interactions. Our results show that multiple CoNS species can be isolated from pig nares and that the majority of these produce AIPs that inhibit S. aureus agr. Further they show that the consequences of the interactions between CoNS and S. aureus are complex and highly strain dependent.

7.
Mol Microbiol ; 112(4): 1116-1130, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290194

RESUMO

Inhibition of cell division is critical for viability under DNA-damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS-induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C-terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild-type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C-terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.


Assuntos
Divisão Celular/genética , Divisão Celular/fisiologia , Resposta SOS em Genética/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteínas de Membrana/metabolismo , Resposta SOS em Genética/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
8.
Nat Chem ; 11(5): 463-469, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011175

RESUMO

Staphylococci secrete autoinducing peptides (AIPs) as signalling molecules to regulate population-wide behaviour. AIPs from non-Staphylococcus aureus staphylococci have received attention as potential antivirulence agents to inhibit quorum sensing and virulence gene expression in the human pathogen Staphylococcus aureus. However, only a limited number of AIP structures from non-S. aureus staphylococci have been identified to date, as the minute amounts secreted in complex media render it difficult. Here, we report a method for the identification of AIPs by exploiting their thiolactone functionality for chemoselective trapping and enrichment of the compounds from the bacterial supernatant. Standard liquid chromatography mass spectrometry analysis, guided by genome sequencing data, then readily provides the AIP identities. Using this approach, we confirm the identity of five known AIPs and identify the AIPs of eleven non-S. aureus species, and we expect that the method should be extendable to AIP-expressing Gram-positive bacteria beyond the Staphylococcus genus.


Assuntos
Proteínas de Bactérias/análise , Depsipeptídeos/análise , Staphylococcus/química , Sequência de Aminoácidos , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Cisteína/química , Depsipeptídeos/síntese química , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Limite de Detecção , Listeria monocytogenes/química , Estrutura Molecular , Percepção de Quorum/efeitos dos fármacos , Staphylococcus/metabolismo
9.
Front Microbiol ; 9: 255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515541

RESUMO

Incomplete killing of bacterial pathogens by antibiotics is an underlying cause of treatment failure and accompanying complications. Among those avoiding chemotherapy are persisters being individual cells in a population that for extended periods of time survive high antibiotic concentrations proposedly by being in a quiescent state refractory to antibiotic killing. While investigating the human pathogen Staphylococcus aureus and the influence of growth phase on persister formation, we noted that spent supernatants of stationary phase cultures of S. aureus or S. epidermidis, but not of distantly related bacteria, significantly reduced the persister cell frequency upon ciprofloxacin challenge when added to exponentially growing and stationary phase S. aureus cells. Curiously, the persister reducing activity of S. aureus supernatants was also effective against persisters formed by either S. carnosus or Listeria monocytogenes. The persister reducing component, which resisted heat but not proteases and was produced in the late growth phase in an agr quorum-sensing dependent manner, was identified to be the phenol-soluble modulin (PSM) toxins. S. aureus express several PSMs, each with distinct cytolytic and antimicrobial properties; however, the persister reducing activity was specifically linked to synthesis of the PSMα family. Correspondingly, a high-persister phenotype of a PSMα mutant was observed upon fluoroquinolone or aminoglycoside challenge, demonstrating that the persister reducing activity of PSMs can be endogenously synthesized or extrinsically added. Given that PSMs have been associated with lytic activity against bacterial membranes we propose that PSM toxins increase the susceptibility of persister cells to killing by intracellularly acting antibiotics and that chronic and re-occurring infections with quorum sensing, agr negative mutants may be difficult to treat with antibiotics because of persister cells formed in the absence of PSM toxins.

10.
J Biol Chem ; 293(9): 3254-3264, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29326162

RESUMO

The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3'-diphosphate ((p)ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multidomain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, RelQ (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major functional states, pre-catalytic (bound to GTP and the non-hydrolyzable ATP analogue, adenosine 5'-(α,ß-methylene)triphosphate (AMP-CPP)), and post-catalytic (bound to pppGpp). We observed that RelP also forms a tetramer, but unlike RelQ (SAS1), it is strongly inhibited by both pppGpp and ppGpp and is insensitive to inhibition by RNA. We also identified putative metal ion-binding sites at the subunit interfaces that were consistent with the observed activation of the enzyme by Zn2+ ions. The structures reported here reveal the details of the catalytic mechanism of SAS enzymes and provide a molecular basis for understanding differential regulation of SAS enzymes in Firmicute bacteria.


Assuntos
Ligases/química , Ligases/metabolismo , Pirofosfatases/biossíntese , Staphylococcus aureus/enzimologia , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Ferro/metabolismo , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Zinco/metabolismo
13.
PLoS One ; 11(12): e0168305, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005941

RESUMO

Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Staphylococcus aureus/genética , Fatores de Virulência/genética , Virulência/genética , Xantonas/farmacologia , Proteínas de Bactérias/metabolismo , Humanos , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Virulência/efeitos dos fármacos
14.
Front Microbiol ; 7: 1733, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877157

RESUMO

Staphylococci are associated with both humans and animals. While most are non-pathogenic colonizers, Staphylococcus aureus is an opportunistic pathogen capable of causing severe infections. S. aureus virulence is controlled by the agr quorum sensing system responding to secreted auto-inducing peptides (AIPs) sensed by AgrC, a two component histidine kinase. agr loci are found also in other staphylococcal species and for Staphylococcus epidermidis, the encoded AIP represses expression of agr regulated virulence genes in S. aureus. In this study we aimed to better understand the interaction between staphylococci and S. aureus, and show that this interaction may eventually lead to the identification of new anti-virulence candidates to target S. aureus infections. Here we show that culture supernatants of 37 out of 52 staphylococcal isolates representing 17 different species inhibit S. aureus agr. The dog pathogen, Staphylococcus schleiferi, expressed the most potent inhibitory activity and was active against all four agr classes found in S. aureus. By employing a S. aureus strain encoding a constitutively active AIP receptor we show that the activity is mediated via agr. Subsequent cloning and heterologous expression of the S. schleiferi AIP in S. aureus demonstrated that this molecule was likely responsible for the inhibitory activity, and further proof was provided when pure synthetic S. schleiferi AIP was able to completely abolish agr induction of an S. aureus reporter strain. To assess impact on S. aureus virulence, we co-inoculated S. aureus and S. schleiferi in vivo in the Galleria mellonella wax moth larva, and found that expression of key S. aureus virulence factors was abrogated. Our data show that the S. aureus agr locus is highly responsive to other staphylococcal species suggesting that agr is an inter-species communication system. Based on these results we speculate that interactions between S. aureus and other colonizing staphylococci will significantly influence the ability of S. aureus to cause infection, and we propose that other staphylococci are potential sources of compounds that can be applied as anti-virulence therapy for combating S. aureus infections.

15.
Front Microbiol ; 7: 2018, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066345

RESUMO

The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We screened the Nebraska Transposon Mutant Library of 1920 single-gene inactivations in S. aureus strain JE2, for increased susceptibility to the anti-staphylococcal antimicrobials (ciprofloxacin, oxacillin, linezolid, fosfomycin, daptomycin, mupirocin, vancomycin, and gentamicin). Sixty-eight mutants were confirmed by E-test to display at least twofold increased susceptibility to one or more antimicrobial agents. The majority of the identified genes have not previously been associated with antimicrobial susceptibility in S. aureus. For example, inactivation of genes encoding for subunits of the ATP synthase, atpA, atpB, atpG and atpH, reduced the minimum inhibitory concentration (MIC) of gentamicin 16-fold. To elucidate the potential of the screen, we examined treatment efficacy in the Galleria mellonella infection model. Gentamicin efficacy was significantly improved, when treating larvae infected with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets for compounds that may potentiate the efficacy of existing antimicrobial agents against this important pathogen.

16.
PLoS One ; 9(1): e84992, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416329

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus.


Assuntos
Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Neutrófilos/microbiologia , Peptídeos Cíclicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/microbiologia , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Neutrófilos/efeitos dos fármacos , Peptídeos Cíclicos/isolamento & purificação , Photobacterium/química , Cultura Primária de Células , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Percepção de Quorum/genética , Coelhos , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo , Virulência
17.
PLoS One ; 8(3): e60519, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544153

RESUMO

The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-ß-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.


Assuntos
Infecções Bacterianas/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Harmina/análogos & derivados , Imunidade Inata/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Infecções Bacterianas/patologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Harmina/farmacologia , Temperatura Alta , Humanos , Imunidade Inata/genética , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Longevidade/imunologia , MAP Quinase Quinase 4/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
APMIS ; 120(9): 699-705, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22882258

RESUMO

A plasmid-encoded ClpK protein was recently identified as a predictor of a heat-resistant phenotype in the opportunistic pathogen Klebsiella pneumoniae. This study was undertaken to evaluate the presence of the clpK gene in extended-spectrum ß-lactamase (ESBL)-producing K. pneumoniae and to assess the probable co-transfer of multi-resistance with the heat resistance phenotype. A Danish collection of 80 ESBL-producing K. pneumoniae bloodstream infection isolates was screened for clpK by colony hybridization. Nineteen isolates (24%) were positive for clpK; some of them representing major clones identified in Denmark. Among these, nine isolates belonged to a single K. pneumoniae CTX-M-15 clone with sequence type (ST)16 exhibiting a heat-resistant phenotype. This clone has a multi-hospital occurrence and has also been detected outside Denmark. Horizontal co-transfer of multiple antibiotic resistances, including the CTX-M-15 resistance determinant, and the heat resistance phenotype was observed. Thus, the clpK gene is harbored by different ESBL-producing K. pneumoniae isolates including a clone of ST16 internationally spread. The co-localization of clpK on transferable ESBL-encoding plasmids allowing co-dissemination of multiple drug resistance with bacterial heat resistance is a highly interesting phenomenon that may further complicate the prevention of spreading of certain successful clones of multi-resistant K. pneumoniae.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , beta-Lactamases/metabolismo , Conjugação Genética , Dinamarca/epidemiologia , Farmacorresistência Bacteriana Múltipla , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Hibridização de Ácido Nucleico , Plasmídeos/genética , Estudos Retrospectivos , beta-Lactamases/genética
19.
Microbes Infect ; 14(12): 1034-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22713744

RESUMO

Escherichia coli is an important agent of Gram-negative bacterial infections worldwide, being one of the leading causes of diarrhoea and urinary tract infections. Strategies to understand pathogenesis and develop therapeutic compounds include the use of the nematode Caenorhabditis elegans as a model for virulence characterization and screening for novel antimicrobial entities. Several E. coli human pathotypes are also pathogenic towards C. elegans, and we show here that lack of the RNA chaperone Hfq significantly reduces pathogenicity of VTEC, EAEC, and UPEC in the nematode model. Thus, Hfq is intrinsically essential to pathogenic E. coli for survival and virulence exerted in the C. elegans host.


Assuntos
Caenorhabditis elegans/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Fatores de Virulência/biossíntese , Animais , Proteínas de Escherichia coli/genética , Deleção de Genes , Fator Proteico 1 do Hospedeiro/genética , Viabilidade Microbiana , Análise de Sobrevida , Virulência
20.
Microbes Infect ; 14(2): 155-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21925284

RESUMO

The aim of the study was to compare and evaluate virulence in five strains of Klebsiella pneumoniae, including an isolate carrying New Delhi metallo-beta-lactamase-1 (NDM-1). In vivo virulence was assessed using a murine sepsis model and using the nematode Caenorhabditis elegans killing model, and in vitro virulence by assessing various virulence factors. The NDM-1 carrying K. pneumoniae isolate was the most virulent in the murine sepsis model but there was no clear cut correlation to in vitro virulence factors or killing in C. elegans. It is concluded that K. pneumoniae carrying NDM-1 have an intrinsic virulence potential, which in coexistence with its multiresistance could promote and partly explain its epidemiological success.


Assuntos
Caenorhabditis elegans/fisiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Temperatura Corporal , Caenorhabditis elegans/microbiologia , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Estimativa de Kaplan-Meier , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Modelos Animais , Sepse/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...