Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(4): nwac290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36960224

RESUMO

Building a more resilient food system for sustainable development and reducing uncertainty in global food markets both require concurrent and near-real-time and reliable crop information for decision making. Satellite-driven crop monitoring has become a main method to derive crop information at local, regional, and global scales by revealing the spatial and temporal dimensions of crop growth status and production. However, there is a lack of quantitative, objective, and robust methods to ensure the reliability of crop information, which reduces the applicability of crop monitoring and leads to uncertain and undesirable consequences. In this paper, we review recent progress in crop monitoring and identify the challenges and opportunities in future efforts. We find that satellite-derived metrics do not fully capture determinants of crop production and do not quantitatively interpret crop growth status; the latter can be advanced by integrating effective satellite-derived metrics and new onboard sensors. We have identified that ground data accessibility and the negative effects of knowledge-based analyses are two essential issues in crop monitoring that reduce the applicability of crop monitoring for decisions on food security. Crowdsourcing is one solution to overcome the restrictions of ground-truth data accessibility. We argue that user participation in the complete process of crop monitoring could improve the reliability of crop information. Encouraging users to obtain crop information from multiple sources could prevent unconscious biases. Finally, there is a need to avoid conflicts of interest in publishing publicly available crop information.

2.
Int J Environ Res Public Health ; 8(8): 3156-78, 2011 08.
Artigo em Inglês | MEDLINE | ID: mdl-21909297

RESUMO

Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.


Assuntos
Simulação por Computador , Ecossistema , Incêndios , Tecnologia de Sensoriamento Remoto/métodos , Medição de Risco/métodos , Biomassa , China , Clima , Umidade , Modelos Teóricos , Tecnologia de Sensoriamento Remoto/instrumentação , Astronave/instrumentação , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...