Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30593, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742063

RESUMO

The native berries of South America present promising marketing opportunities owing to their high antioxidant content, notably rich in anthocyanin and phenolic compounds. However, Ecuador's endemic fruits, primarily found in the wild, lack comprehensive data regarding their phytochemical composition and antioxidant capacity, underscoring the need for research in this area. Accordingly, this study evaluated the total phenolic, anthocyanin, flavonoid, resveratrol, ascorbic acid, citric acid, sugars, and antioxidant content of three native Ecuadorian fruits: mora de monte (Rubus glabratus Kunth), mortiño (Vaccinium floribundum Kunth), and tuna de monte (Opuntia soederstromiana). Determination of resveratrol, ascorbic acid, citric acid, and sugars was determined by HPLC analysis, and UPLC analysis was used to determine tentative metabolites with nutraceutical properties. Antioxidant capacity was assessed using cyclic voltammetry and the DPPH method; differential pulse voltammetry was used to evaluate antioxidant power. Analysis of results through UPLC-QTOF mass spectrometry indicated that R. glabratus Kunth and V. floribundum Kunth are important sources of various compounds with potential health-promoting functions in the body. The DPPH results showed the following antioxidant capacities for the three fruits: R. glabratus Kunth > O. soederstromiana > V. floribundum Kunth; this trend was consistent with the antioxidant capacity results determined using the electrochemical methods.

2.
Chemosphere ; 346: 140586, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939931

RESUMO

Paracetamol, a contaminant of emerging concern, has been detected in different bodies of water, where it can impact ecological and human health. To quantify this paracetamol, electroanalytical methods have gained support. Thus, the present study developed a simple, inexpensive, and environmentally friendly method for paracetamol quantification using a carbon fiber microelectrode based on commercial carbon fiber. To improve the carbon fiber microelectrode's paracetamol sensitivity and selectivity, it was subjected to an activation process via electrochemical oxidation in an acid medium (H2SO4 or HNO3), using 20 consecutive cycles of cyclic voltammetry. The treated (activated) carbon fiber microelectrode was characterized using scanning electron microscopy and electrochemical techniques, including chronoamperometry and electrochemical impedance spectroscopy. The H2SO4-activated carbon fiber microelectrode exhibited enhanced figures of merit, with a linear dynamic range of paracetamol detection from 0.5 to 11 µmol L-1 and a limit of detection of 0.21 µmol L-1 under optimized conditions. The method was optimized by quantifying paracetamol in commercial pharmaceutical tablets, spiked running tap water, and river water (Pita River, Quito, Ecuador, latitude -0.364955°, longitude -78.404538°); the respective recovery values were 102.89, 103.93, and 112.40%. The results demonstrated an acceptable level of accuracy and the promising applicability of this carbon fiber microelectrode as a sensor to detect paracetamol.


Assuntos
Acetaminofen , Carvão Vegetal , Humanos , Microeletrodos , Fibra de Carbono , Água
3.
Sci Rep ; 13(1): 20232, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981653

RESUMO

Marine sediments are a useful environmental assessment matrix as they naturally trap toxic substances of anthropogenic origin and thus have higher concentrations of these than the surrounding water. Therefore, developing methods for the sensitive, accurate, and inexpensive quantification of these substances is important, as the traditional techniques have various disadvantages. The current study evaluated the effectiveness of an in situ bismuth-modified carbon-fiber microelectrode (voltamperometric sensor) to simultaneously detect Pb, Cd, and Zn in marine sediments from Puerto Jeli in El Oro Province, Ecuador. This site is representative of the contamination levels present along the coast in this province. Differential pulse anodic stripping voltammetry was applied, and the resulting linear regression for the metal quantification ranged from 12 to 50 µg mL-1, with quantification limits for Pb(II), Cd(II), and Zn(II) of 18.69, 12.55, and 19.29 µg mL-1, respectively. Thus, the quantification with the sensor was successful. According to the preliminary results, Cd and Pb values exceeded the permissible limits established by Ecuador (Texto Unificado de la Legislación Secundaria del Ministerio del Ambiente) and the US Environmental Protection Agency, respectively.

4.
Chemosphere ; 338: 139483, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454989

RESUMO

Seafood consumption is the primary exposure route for trace metals like mercury. Accordingly, canned tuna meat has been focused on by researchers because of the potential bioaccumulation of high amounts of mercury. This study aimed to test a novel and reliable electroanalytical method employing a working electrode consisting of gold-nanoparticle-modified carbon microfibers to quantify total mercury in canned tuna samples. Determination was achieved via differential pulse anodic stripping voltammetry. The proposed method had a limit of detection of 3.9781 ± 0.0001 µg L-1 and a limit of quantification of 33.6634 ± 0.0001 µg L-1, with a sensitivity of 0.3275 nA µg L-1. The modified electrode was evaluated in samples taken from three canned tuna brands sold in the Sangolquí parish in Rumiñahui, Ecuador. These brands, coded A, B, and C, represent 47.92%, 27.08%, and 11.98% of all canned tuna sold in the Ecuadorian market, respectively. The resulting respective total mercury concentrations were 0.5999 ± 0.0001 mg kg-1; 0.9387 ± 0.0001 mg kg-1; and 0.3442 ± 0.0001 mg kg-1 for A, B, and C. Method accuracy was determined through the recovery percentages of ≥98%, which indicated acceptable accuracy for the final optimized method. Mean mercury concentrations for all samples did not represent a carcinogenic risk for consumers. However, the values obtained for potential no-carcinogenic risk and daily consumption rate suggest that consumers of tuna canned in water, particularly brand C, may be at risk.


Assuntos
Mercúrio , Nanopartículas , Animais , Mercúrio/análise , Atum , Ouro , Equador , Microeletrodos , Fibra de Carbono , Alimentos Marinhos/análise , Carcinógenos , Contaminação de Alimentos/análise
5.
Front Chem ; 11: 900670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179778

RESUMO

Treating domestic wastewater has become more and more complicated due to the high content of different types of detergents. In this context, advanced electro-oxidation (AEO) has become a powerful tool for complex wastewater remediation. The electrochemical degradation of surfactants present in domestic wastewater was carried out using a DiaClean® cell in a recirculation system equipped with boron-doped diamond (BDD) as the anode and stainless steel as the cathode. The effect of recirculation flow (1.5, 4.0 and 7.0 L min-1) and the applied current density (j = 7, 14, 20, 30, 40, and 50 mA cm-2) was studied. The degradation was followed by the concentration of surfactants, chemical oxygen demand (COD), and turbidity. pH value, conductivity, temperature, sulfates, nitrates, phosphates, and chlorides were also evaluated. Toxicity assays were studied through evaluating Chlorella sp. performance at 0, 3, and 7 h of treatment. Finally, the mineralization was followed by total organic carbon (TOC) under optimal operating conditions. The results showed that applying j = 14 mA cm-2 and a flow rate of 1.5 L min-1 during 7 h of electrolysis were the best conditions for the efficient mineralization of wastewater, achieving the removal of 64.7% of surfactants, 48.7% of COD, 24.9% of turbidity, and 44.9% of mineralization analyzed by the removal of TOC. The toxicity assays showed that Chlorella microalgae were unable to grow in AEO-treated wastewater (cellular density: 0 × 104 cells ml-1 after 3- and 7-h treatments). Finally, the energy consumption was analyzed, and the operating cost of 1.40 USD m-3 was calculated. Therefore, this technology allows for the degradation of complex and stable molecules such as surfactants in real and complex wastewater, if toxicity is not taken into account.

6.
Front Chem ; 10: 884050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864867

RESUMO

In this investigation, a hydrogen peroxide (H2O2) electrochemical sensor was evaluated. Prussian blue (PB) was electrodeposited at a glassy carbon (GC) electrode modified with titanium dioxide- and zirconia-doped functionalized carbon nanotubes (TiO2.ZrO2-fCNTs), obtaining the PB/TiO2.ZrO2-fCNTs/GC-modified electrode. The morphology and structure of the nanostructured material TiO2.ZrO2-fCNTs was characterized by transmission electron microscopy, the specific surface area was determined via Brunauer-Emmett-Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The electrochemical properties were studied by cyclic voltammetry and chronoamperometry. Titania-zirconia nanoparticles (5.0 ± 2.0 nm) with an amorphous structure were directly synthesized on the fCNT walls, aged during periods of 20 days, obtaining a well-dispersed distribution with a high surface area. The results indicated that the TiO2.ZrO2-fCNT-nanostructured material exhibits good electrochemical properties and could be tunable by enhancing the modification conditions and method of synthesis. Covering of the nanotubes with TiO2-ZrO2 nanoparticles is one of the main factors that affected immobilization and sensitivity of the electrochemical biosensor. The electrode modified with TiO2-ZrO2 nanoparticles with the 20-day aging time was superior regarding its reversibility, electric communication, and high sensitivity and improves the immobilization of the PB at the electrode. The fabricated sensor was used in the detection of H2O2 in whey milk samples, presenting a linear relationship from 100 to 1,000 µmol L-1 between H2O2 concentration and the peak current, with a quantification limit (LQ) of 59.78 µmol L-1 and a detection limit (LD) of 17.93 µmol L-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...