Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631437

RESUMO

The effect of low-temperature arc discharge plasma treatment in a nitrogen atmosphere on the modification of the physicochemical properties of PLA-based scaffolds was studied. In addition, the cellular-mediated immune response when macrophages of three donors interact with the modified surfaces of PLA-based scaffolds was investigated. PLA surface carbonization, accompanied by a carbon atomic concentration increase, was revealed to occur because of plasma treatment. Nitrogen plasma significantly influenced the PLA wettability characteristics, namely, the hydrophilicity and lipophilicity were improved, as well as the surface energy being raised. The viability of cells in the presence of the plasma-modified PLA scaffolds was evaluated to be higher than that of the initial cells.

2.
J Funct Biomater ; 13(4)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547545

RESUMO

In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them-oxide, another two-calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.

3.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433049

RESUMO

In this study, polymer scaffolds were fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) and from non-biodegradable vinylidene fluoride-tetrafluoroethylene (VDF-TeFE) by electrospinning. These polymer scaffolds were subsequently surface-modified by sputtering titanium targets in an argon atmosphere. Direct current pulsed magnetron sputtering was applied to prevent a significant influence of discharge plasma on the morphology and mechanical properties of the nonwoven polymer scaffolds. The scaffolds with initially hydrophobic properties show higher hydrophilicity and absorbing properties after surface modification with titanium. The surface modification by titanium significantly increases the cell adhesion of both the biodegradable and the non-biodegradable scaffolds. Immunocytochemistry investigations of human gingival fibroblast cells on the surface-modified scaffolds indicate that a PLGA scaffold exhibits higher cell adhesion than a VDF-TeFE scaffold.

4.
Membranes (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34940487

RESUMO

In the present study, wound healing ferroelectric membranes doped with zinc oxide nanoparticles were fabricated from vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone using the electrospinning technique. Five different ratios of vinylidene fluoride-tetrafluoroethylene to polyvinylpyrrolidone were used to control the properties of the membranes at a constant zinc oxide nanoparticle content. It was found that an increase of polyvinylpyrrolidone content leads to a decrease of the spinning solution conductivity and viscosity, causing a decrease of the average fiber diameter and reducing their strength and elongation. By means of X-ray diffraction and infrared spectroscopy, it was revealed that increased polyvinylpyrrolidone content leads to difficulty in crystallization of the vinylidene fluoride-tetrafluoroethylene copolymer in the ferroelectric ß-phase in membranes. Changing the ratio of vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone with a constant content of zinc oxide nanoparticles is an effective approach to control the antibacterial properties of membranes towards Staphylococcus aureus. After carrying out in vivo experiments, we found that ferroelectric hybrid membranes, containing from five to ten mass percent of PVP, have the greatest wound-healing effect for the healing of purulent wounds.

5.
Membranes (Basel) ; 11(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379409

RESUMO

Wound healing is a complex process and an ongoing challenge for modern medicine. Herein, we present the results of study of structure and properties of ferroelectric composite polymer membranes for wound healing. Membranes were fabricated by electrospinning from a solution of vinylidene fluoride/tetrafluoroethylene copolymer (VDF-TeFE) and polyvinylpyrrolidone (PVP) in dimethylformamide (DMF). The effects of the PVP content on the viscosity and conductivity of the spinning solution, DMF concentration, chemical composition, crystal structure, and conformation of VDF-TeFE macromolecules in the fabricated materials were studied. It was found that as PVP amount increased, the viscosity and conductivity of the spinning solutions decreased, resulting in thinner fibers. Using FTIR and XRD methods, it was shown that if the PVP content was lower than 50 wt %, the VDF-TeFE copolymer adopted a flat zigzag conformation (TTT conformation) and crystalline phases with ferroelectric properties were formed. Gas chromatography results indicated that an increase in the PVP concentration led to a higher residual amount of DMF in the material, causing cytotoxic effects on 3T3L1 fibroblasts. In vivo studies demonstrated that compared to classical gauze dressings impregnated with a solution of an antibacterial agent, ferroelectric composite membranes with 15 wt % PVP provided better conditions for the healing of purulent wounds.

6.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374987

RESUMO

These days, composite materials based on polymers and inorganic nanoparticles (NPs) are widely used in optoelectronics and biomedicine. In this work, composite membranes of polylactic acid and ZnO NPs containing 5-40 wt.% of the latter NPs were produced by means of electrospinning. For the first time, polymer material loaded with up to 40 wt.% of ZnO NPs (produced via laser ablation in air and having non-modified surface) was used to prepare fiber-based composite membranes. The morphology, phase composition, mechanical, spectral and antibacterial properties of the membranes were tested by a set of analytical techniques including SEM, XRD, FTIR, UV-vis, and photoluminescence spectroscopy. Antibacterial activity of the materials was evaluated following standard procedures (ISO 20743:2013) and using S. aureus and E. coli bacteria. It is shown that incorporation of 5-10 wt.% of NPs led to improved mechanical properties of the composite membranes, while further increase of ZnO content up to 20 wt.% and above resulted in their noticeable deterioration. At the same time, the antibacterial properties of ZnO-rich membranes were more pronounced, which is explained by a larger number of surface-exposed ZnO NPs, in addition to those embedded into the bulk of fiber material.

7.
ACS Biomater Sci Eng ; 6(7): 3967-3974, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463309

RESUMO

Direct current (DC) reactive magnetron sputtering is as an efficient method for enhancing the biocompatibility of poly(ε-caprolactone) (PCL) scaffolds. However, the PCL chemical bonding state, the composition of the deposited coating, and their interaction with immune cells remain unknown. Herein, we demonstrated that the DC reactive magnetron sputtering of the titanium target in a nitrogen atmosphere leads to the formation of nitrogen-containing moieties and the titanium dioxide coating on the scaffold surface. We have provided the possible mechanism of PCL fragmentation and coating formation supported by XPS results and DFT calculations. Our preliminary biological studies suggest that DC reactive magnetron sputtering of the titanium target could be an effective tool to control macrophage functional responses toward PCL scaffolds as it allows to inhibit respiratory burst while retaining cell viability and scavenging activity.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Macrófagos , Poliésteres
8.
Materials (Basel) ; 11(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314394

RESUMO

In this study, thin calcium phosphate (Ca-P) coatings were deposited on zirconia substrates by radiofrequency (RF) magnetron sputtering using different calcium phosphate targets (calcium phosphate tribasic (CPT), hydroxyapatite (HA), calcium phosphate monobasic, calcium phosphate dibasic dehydrate (DCPD) and calcium pyrophosphate (CPP) powders). The sputtering of calcium phosphate monobasic and DCPD powders was carried out without an inert gas in the self-sustaining plasma mode. The physico-chemical, mechanical and biological properties of the coatings were investigated. Cell adhesion on the coatings was examined using mesenchymal stem cells (MSCs). The CPT coating exhibited the best cell adherence among all the samples, including the uncoated zirconia substrate. The cells were spread uniformly over the surfaces of all samples.

9.
J Tissue Eng Regen Med ; 12(12): 2248-2255, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30350395

RESUMO

Early treatment of bone fractures was performed using implants, which are often used in the form of plates of various types, which are fixed on the bone surface (extracellular fixation) and nails that are located in the medullary canal (intracerebral fixation). The goal of this study was to investigate the features of osseointegration of implants for internal fixation (intramedullary or extramedullary) with various bioactive coating techniques. During experimental study on 20 mongrel dogs, the implant model in the form of 1.0-mm plate made of titanium alloy (Ti6Al 4V) was placed in the medullary canal (first series) or under the periosteum (second series): the plates had bioactive coating (hydroxyapatite) produced using the technology of magnetron sputtering (six animals), plasma electrolytic oxidation or microarc oxidation technology (PEO; eight animals), and composite technology (six dogs). Anatomic and histological studies have shown that the process of active osseointegration of porous implants with bioactive coating begins after 7 days: at first, granulation tissue - and then fibrous connective tissue - is formed; after 14 days, the osteogenic substrate can be found, and after 28 days, the entire implant area is covered by the lamellar bone tissue, which creates single implant-bone block. The most active formation of bone tissue is observed around implants with bioactive coating produced using the last two technologies. Low traumatic placement of porous implants with bioactive coating in the medullary canal or subperiosteally provides the stimulation of reparative osteogenesis and rapid (especially with PEO technique) osseointegration of the implant.


Assuntos
Placas Ósseas , Materiais Revestidos Biocompatíveis , Implantes Experimentais , Tíbia , Fraturas da Tíbia , Ligas , Animais , Cães , Feminino , Masculino , Tíbia/diagnóstico por imagem , Tíbia/metabolismo , Fraturas da Tíbia/diagnóstico , Fraturas da Tíbia/metabolismo , Fraturas da Tíbia/cirurgia , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...