Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(24): 6538-6545, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350840

RESUMO

The deprotonative metalation of organic molecules has become a convenient route to prepare functionalised aromatic substrates. Amongst the different metallating reagents available, sodium bases have recently emerged as a more sustainable and powerful alternative to their lithium analogues. Here we report the study of the sterically demanding electrophilic trap B(CH2SiMe3)3 for the deprotonative borylation of arenes using NaTMP (TMP = 2,2,6,6-tetramethylpiperidide) in combination with tridentate Lewis donor PMDETA (PMDETA = N,N,N',N'',N''-pentamethyldiethylenetriamine). Using anisole and benzene as model substrates, unexpected polybasic behaviour has been uncovered, which enables the formal borylation of two equivalents of the relevant arene. The combination of X-ray crystallographic and NMR monitoring studies with DFT calculations has revealed that while the first B-C bond forming process takes place via a sodiation/borylation sequence to furnish [(PMDETA)NaB(Ar)(CH2SiMe3)3] species, the second borylation step is facilitated by the formation of a borata-alkene intermediate, without the need of an external base. For non-activated benzene, it has also been found that under stoichimetric conditions the lateral sodiation of B(CH2SiMe3)3 becomes a competitive reaction pathway furnishing a novel borata-alkene complex. Showing a clear alkali-metal effect, the use of the sodium base is key to access this reactivity, while the metalation/borylation of the amine donor PMDETA is observed instead when LiTMP is used.

2.
Angew Chem Int Ed Engl ; 61(40): e202210491, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35943036

RESUMO

A new method for regioselective zincations of challenging N-heterocyclic substrates such as pyrimidines and pyridazine was reported using bimetallic bases TMPZnX⋅LiX (TMP=2,2,6,6-tetramethylpiperidyl; X=Cl, Br). Reactions occurred under mild conditions (25-70 °C, using 1.75 equivalents of base without additives), furnishing 2-zincated pyrimidines and 3-zincated pyridazine, which were then trapped with a variety of electrophiles. Contrasting with other s-block metalating systems, which lack selectivity in their reactions even when operating at low temperatures, these mixed Li/Zn bases enabled unprecedented regioselectivities that cannot be replicated by either LiTMP nor Zn(TMP)2 on their own. Spectroscopic and structural interrogations of organometallic intermediates involved in these reactions have shed light on the complex constitution of reaction mixtures and the origins of their special reactivities.

3.
Angew Chem Int Ed Engl ; 61(26): e202204262, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420221

RESUMO

Though LiTMP (TMP=2,2',6,6'-tetramethylpiperidide) is a commonly used amide, surprisingly the heavier NaTMP has hardly been utilised. Here, by mixing NaTMP with tridentate donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine), we provide structural, and mechanistic insights into the sodiation of non-activated arenes (e.g. anisole and benzene). While these reactions are low yielding, adding B(OiPr)3 has a profound effect, not only by intercepting the CAr -Na bond, but also by driving the metalation reaction towards quantitative formation of more stabilized sodium aryl boronates. Demonstrating its metalating power, regioselective C2-metalation/borylation of naphthalene has been accomplished contrasting with single-metal based protocols which are unselective and low yielding. Extension to other arenes allows for in situ generation of aryl boronates which can then directly engage in Suzuki-Miyaura couplings, furnishing a range of biaryls in a selective and efficient manner.

4.
Chemistry ; 28(10): e202104164, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34939701

RESUMO

Advancing the understanding of using alkali-metal alkoxides as additives to organomagnesium reagents in Mg-Br exchange reactions, a homologous series of mixed-ligand alkyl/alkoxide alkali-metal magnesiates [MMg(CH2 SiMe3 )2 (dmem)]2 [dmem=2-{[2-(dimethylamino)ethyl]methylamino} ethoxide; M=Li, 1; Na, 2; (THF)K, 3] has been prepared. Structural and spectroscopic studies have established the constitutions of these heteroleptic/heterometallic species, which are retained in arene solution. Evaluation of their reactivity towards 2-bromoanisole has uncovered a marked alkali-metal effect with potassium magnesiate 3 being the most efficient of the three ate reagents. Studies probing the constitution of the exchange product from this reaction suggest that the putative [KMgAr2 (dmem)]2 (Ar=o-OMe-C6 H4 ) intermediate undergoes redistribution into its single metal components [KAr]n and [MgAr(dmem)]2 (5). This process can be circumvented by using a different potassium alkoxide containing an aliphatic chain such as KOR' (R'=2-ethylhexyl) which undergoes co-complexation with Mg(CH2 SiMe3 ) to give [KMg(CH2 SiMe3 )2 (OR')]2 (7). This ate, in turn, reacts quantitatively with 2-bromoanisole furnishing [KMgAr2 (OR')]2 (9) which is stable in solution as a bimetallic compound. Collectively this work highlights the complexity of these alkali-metal mediated Mg-Br exchange reactions, where each reaction component can have a profound effect not only on the success of the reaction; but also the stability of the final metalated intermediates prior to their electrophilic interception.

5.
Inorg Chem ; 60(18): 13784-13796, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34191489

RESUMO

Exploiting the steric incompatibility of the tris(alkyl)gallium GaR3 (R = CH2SiMe3) and the bulky N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu), here we report the B-H bond activation of pinacolborane (HBPin), which has led to the isolation and structural authentication of a novel ion pair, [{ItBu-BPin}+{GaR3(µ-H)GaR3}-] (2). Contrastingly, neither ItBu or GaR3 was able to react with HBPin under the conditions of this study. Combining an NHC-stabilized borenium cation, [{ItBu-BPin}+], with an anionic dinuclear gallate, [{GaR3(µ-H)GaR3}-], 2 proved to be unstable in solution at room temperature, evolving to the abnormal NHC-Ga complex [BPinC{{N(tBu)]2CHCGa(R)3}] (3). Interestingly, the structural isomer of 2, with the borenium cation residing at the C4 position of the carbene, [{aItBu-BPin}+{GaR3(µ-H)GaR3}-] (4), was obtained when the abnormal NHC complex [aItBu·GaR3] (1) was heated to 70 °C with HBPin, demonstrating that, under these forced conditions, it is possible to induce thermal frustration of the Lewis base/Lewis acid components of 1, enabling the activation of HBPin. Building on these stoichiometric studies, the frustrated Lewis pair (FLP) reactivity observed for the GaR3/ItBu combination with HBPin could then be upgraded to catalytic regimes, allowing the efficient hydroboration of a range of aldehydes and ketones under mild reaction conditions. Mechanistic insights into the possible reaction pathway involved in this process have been gained by combining kinetic investigations with a comparative study of the catalytic capabilities of several gallium and borenium species related to 2. Disclosing a new cooperative partnership, reactions are proposed to occur via the formation of a highly reactive monomeric hydride gallate, [{ItBu-BPin}+{GaR3(H)}-] (I). Each anionic and cationic component of I plays a key role for success of the hydroboration, with the nucleophilic monomeric gallate anion favoring the transfer of its hydride to the C═O bond of the organic substate, which in turn is activated by coordination to the borenium cation.

6.
Angew Chem Int Ed Engl ; 60(14): 7626-7631, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33404179

RESUMO

While it is known that the addition of Group 1 alkoxides to s-block organometallics can have an activating effect on reactivity, the exact nature of this effect is not that well understood. Here we describe the activation of sBu2 Mg towards substituted bromoarenes by adding one equivalent of LiOR (R=2-ethylhexyl), where unusually both sBu groups can undergo efficient Br/Mg exchange. Depending on the substitution pattern on the bromoarene two different types of organometallic intermediates have been isolated, either a mixed aryl/alkoxide [{LiMg(2-FG-C6 H4 )2 (OR)}2 ] (FG=OMe; NMe2 ) or a homoaryl [(THF)4 Li2 Mg(4-FG-C6 H4 )4 ] (FG=OMe, F). Detailed NMR spectroscopic studies have revealed that these exchange reactions and the formation of their intermediates are controlled by a new type of bimetallic Schlenk-type equilibrium between heteroleptic [LiMgsBu2 (OR)], alkyl rich [Li2 MgsBu4 ] and Mg(OR)2 , with [Li2 MgsBu4 ] being the active species performing the Br/Mg exchange process.

7.
Angew Chem Int Ed Engl ; 60(3): 1513-1518, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33079466

RESUMO

Using the bimetallic combination sBu2 Mg⋅2 LiOR (R=2-ethylhexyl) in toluene enables efficient and regioselective Br/Mg exchanges with various dibromo-arenes and -heteroarenes under mild reaction conditions and provides bromo-substituted magnesium reagents. Assessing the role of Lewis donor additives in these reactions revealed that N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDTA) finely tunes the regioselectivity of the Br/Mg exchange on dibromo-pyridines and quinolines. Combining spectroscopic with X-ray crystallographic studies, light has been shed on the mixed Li/Mg constitution of the organometallic intermediates accomplishing these transformations. These systems reacted effectively with a broad range of electrophiles, including allyl bromides, ketones, aldehydes, and Weinreb amides in good yields.

8.
Chem Sci ; 11(25): 6500-6509, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874519

RESUMO

Lithium amides constitute one of the most commonly used classes of reagents in synthetic chemistry. However, despite having many applications, their use is handicapped by the requirement of low temperatures, in order to control their reactivity, as well as the need for dry organic solvents and protective inert atmosphere protocols to prevent their fast decomposition. Advancing the development of air- and moisture-compatible polar organometallic chemistry, the chemoselective and ultrafast amidation of esters mediated by lithium amides is reported. Establishing a novel sustainable access to carboxamides, this has been accomplished via direct C-O bond cleavage of a range of esters using glycerol or 2-MeTHF as a solvent, in air. High yields and good selectivity are observed while operating at ambient temperature, without the need for transition-metal mediation, and the protocol extends to transamidation processes. Pre-coordination of the organic substrate to the reactive lithium amide as a key step in the amidation processes has been assessed, enabling the structural elucidation of the coordination adduct [{Li(NPh2)(O[double bond, length as m-dash]CPh(NMe2))}2] (8) when toluene is employed as a solvent. No evidence for formation of a complex of this type has been found when using donor THF as a solvent. Structural and spectroscopic insights into the constitution of selected lithium amides in 2-MeTHF are provided that support the involvement of small kinetically activated aggregates that can react rapidly with the organic substrates, favouring the C-O bond cleavage/C-N bond formation processes over competing hydrolysis/degradation of the lithium amides by moisture or air.

9.
Angew Chem Int Ed Engl ; 59(43): 19021-19026, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32696612

RESUMO

A straightforward alkali-metal-mediated hydroamination of styrenes using biorenewable 2-methyltetrahydrofuran as a solvent is reported. Refuting the conventional wisdom of the incompatibility of organolithium reagents with air and moisture, shown here is that the presence of moisture is key in favoring formation of the target phenethylamines over competing olefin polymerization products. The method is also compatible with sodium amides, with the latter showing excellent promise as highly efficient catalysts under inert atmosphere conditions.

10.
Chemistry ; 26(40): 8742-8748, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32181938

RESUMO

We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4 ZnLi2 ) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4 ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing ß-nitroacrylates and ß-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N',N'-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N',N'-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4 ZnLi2 into equimolar amounts of solvent-separated Et3 ZnLi and EtLi.

11.
Angew Chem Int Ed Engl ; 58(37): 12898-12902, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243862

RESUMO

A wide range of polyfunctional diaryl- and diheteroarylzinc species were prepared in toluene within 10 min to 5 h through an I/Zn or Br/Zn exchange reaction using bimetallic reagents of the general formula R'2 Zn⋅2 LiOR (R'=sBu, tBu, pTol). Highly sensitive functional groups, such as a triazine, a ketone, an aldehyde, or a nitro group, were tolerated in these exchange reactions, enabling the synthesis of a plethora of functionalized (hetero)arenes after quenching with various electrophiles. Insight into the constitution and reactivity of these bimetallic mixtures revealed the formation of highly active lithium diorganodialkoxyzincates of type [R'2 Zn(OR)2 Li2 ].

12.
Chem Commun (Camb) ; 55(30): 4339-4342, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30911746

RESUMO

A series of new Mg(ii) amides featuring a bulky ß-diketiminate backstop ligand, has been synthesised. These complexes are demonstrated to be excellent sources of nucleophilic amides that can participate in rapid C-F activation of several fluoroarenes at room temperature or using microwave assistance, leading to the installment of synthetically important C-N bonds via nucleophilic substitution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA