Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Front Vet Sci ; 11: 1325072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585298

RESUMO

Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.

2.
Pathogens ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133284

RESUMO

Scrapie, a naturally occurring prion disease affecting goats and sheep, comprises classical and atypical forms, with classical scrapie being the archetype of transmissible spongiform encephalopathies. This review explores the challenges of scrapie diagnosis and the utility of various biomarkers and their potential implications for human prion diseases. Understanding these biomarkers in the context of scrapie may enable earlier prion disease diagnosis in humans, which is crucial for effective intervention. Research on scrapie biomarkers bridges the gap between veterinary and human medicine, offering hope for the early detection and improved management of prion diseases.

3.
Vet Res ; 54(1): 89, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794450

RESUMO

The emergence of bovine spongiform encephalopathy (BSE) prions from atypical scrapie has been recently observed upon experimental transmission to rodent and swine models. This study aimed to assess whether the inoculation of atypical scrapie could induce BSE-like disease in cattle. Four calves were intracerebrally challenged with atypical scrapie. Animals were euthanized without clinical signs of prion disease and tested negative for PrPSc accumulation by immunohistochemistry and western blotting. However, an emergence of BSE-like prion seeding activity was detected during in vitro propagation of brain samples from the inoculated animals. These findings suggest that atypical scrapie may represent a potential source of BSE infection in cattle.


Assuntos
Doenças dos Bovinos , Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Scrapie , Doenças dos Ovinos , Doenças dos Suínos , Ovinos , Feminino , Bovinos , Animais , Suínos , Doenças Priônicas/veterinária , Encéfalo/metabolismo
4.
Microorganisms ; 11(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37512924

RESUMO

This review aims to provide a comprehensive overview of the significant Clostridioides difficile molecular typing techniques currently employed in research and medical communities. The main objectives of this review are to describe the key molecular typing methods utilized in C. difficile studies and to highlight the epidemiological characteristics of the most prevalent strains on a global scale. Geographically distinct regions exhibit distinct strain types of C. difficile, with notable concordance observed among various typing methodologies. The advantages that next-generation sequencing (NGS) offers has changed epidemiology research, enabling high-resolution genomic analyses of this pathogen. NGS platforms offer an unprecedented opportunity to explore the genetic intricacies and evolutionary trajectories of C. difficile strains. It is relevant to acknowledge that novel routes of transmission are continually being unveiled and warrant further investigation, particularly in the context of zoonotic implications and environmental contamination.

5.
Front Mol Neurosci ; 16: 1175364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152434

RESUMO

Chronic accumulation of misfolded proteins such as PrPSc can alter the endoplasmic reticulum homeostasis triggering the unfolded protein response (UPR). In this pathogenic event, the molecular chaperones play an important role. Several reports in humans and animals have suggested that neurodegeneration is related to endoplasmic reticulum stress in diseases caused by the accumulation of misfolded proteins. In this study, we investigated the expression of three endoplasmic reticulum stress markers: PERK (protein kinase R-like endoplasmic reticulum kinase), BiP (binding immunoglobulin protein), and PDI (Protein Disulfide Isomerase). In addition, we evaluated the accumulation of ubiquitin as a marker for protein degradation mediated by the proteasome. These proteins were studied in brain tissues of sheep affected by scrapie in clinical and preclinical stages of the disease. Results were compared with those observed in healthy controls. Scrapie-infected sheep showed significant higher levels of PERK, BiP/Grp78 and PDI than healthy animals. As we observed before in models of spontaneous prion disease, PDI was the most altered ER stress marker between scrapie-infected and healthy sheep. Significantly increased intraneuronal and neuropil ubiquitinated deposits were observed in certain brain areas in scrapie-affected animals compared to controls. Our results suggest that the neuropathological and neuroinflammatory phenomena that develop in prion diseases cause endoplasmic reticulum stress in brain cells triggering the UPR. In addition, the significantly higher accumulation of ubiquitin aggregates in scrapie-affected animals suggests an impairment of the ubiquitin-proteasome system in natural scrapie. Therefore, these proteins may contribute as biomarkers and/or therapeutic targets for prion diseases.

6.
Animals (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36978584

RESUMO

In neurodegenerative diseases, including prion diseases, cellular in vitro models appear as fundamental tools for the study of pathogenic mechanisms and potential therapeutic compounds. Two-dimensional (2D) monolayer cell culture systems are the most used cell-based assays, but these platforms are not able to reproduce the microenvironment of in vivo cells. This limitation can be surpassed using three-dimensional (3D) culture systems such as spheroids that more effectively mimic in vivo cell interactions. Herein, we evaluated the effect of scrapie prion infection in monolayer-cultured ovine bone marrow-derived mesenchymal stem cells (oBM-MSCs) and oBM-MSC-derived spheroids in growth and neurogenic conditions, analyzing their cell viability and their ability to maintain prion infection. An MTT assay was performed in oBM-MSCs and spheroids subjected to three conditions: inoculated with brain homogenate from scrapie-infected sheep, inoculated with brain homogenate from healthy sheep, and non-inoculated controls. The 3D conditions improved the cell viability in most cases, although in scrapie-infected spheroids in growth conditions, a decrease in cell viability was observed. The levels of pathological prion protein (PrPSc) in scrapie-infected oBM-MSCs and spheroids were measured by ELISA. In neurogenic conditions, monolayer cells and spheroids maintained the levels of PrPSc over time. In growth conditions, however, oBM-MSCs showed decreasing levels of PrPSc throughout time, whereas spheroids were able to maintain stable PrPSc levels. The presence of PrPSc in spheroids was also confirmed by immunocytochemistry. Altogether, these results show that a 3D culture microenvironment improves the permissiveness of oBM-MSCs to scrapie infection in growth conditions and maintains the infection ability in neurogenic conditions, making this model of potential use for prion studies.

7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675131

RESUMO

Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathies or prion diseases, which are caused by an infectious isoform of the innocuous cellular prion protein (PrPC) known as PrPSc. DNA methylation, one of the most studied epigenetic mechanisms, is essential for the proper functioning of the central nervous system. Recent findings point to possible involvement of DNA methylation in the pathogenesis of prion diseases, but there is still a lack of knowledge about the behavior of this epigenetic mechanism in such neurodegenerative disorders. Here, we evaluated by immunohistochemistry the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in sheep and mouse brain tissues infected with scrapie. Expression analysis of different gene coding for epigenetic regulatory enzymes (DNMT1, DNMT3A, DNMT3B, HDAC1, HDAC2, TET1, and TET2) was also carried out. A decrease in 5mC levels was observed in scrapie-affected sheep and mice compared to healthy animals, whereas 5hmC displayed opposite patterns between the two models, demonstrating a decrease in 5hmC in scrapie-infected sheep and an increase in preclinical mice. 5mC correlated with prion-related lesions in mice and sheep, but 5hmC was associated with prion lesions only in sheep. Differences in the expression changes of epigenetic regulatory genes were found between both disease models, being differentially expressed Dnmt3b, Hdac1, and Tet1 in mice and HDAC2 in sheep. Our results support the evidence that DNA methylation in both forms, 5mC and 5hmC, and its associated epigenetic enzymes, take part in the neurodegenerative course of prion diseases.


Assuntos
Encéfalo , Príons , Scrapie , Animais , Camundongos , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Scrapie/genética , Scrapie/metabolismo , Ovinos , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , DNA Metiltransferase 3B
8.
Acta Neuropathol Commun ; 10(1): 179, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514160

RESUMO

Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.


Assuntos
Doenças Priônicas , Príons , Scrapie , Camundongos , Animais , Ovinos , Humanos , Scrapie/metabolismo , Roedores/metabolismo , Príons/metabolismo , Camundongos Transgênicos , Arvicolinae/metabolismo
9.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293477

RESUMO

Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Histonas/genética , Histonas/metabolismo , Doenças Priônicas/metabolismo , Biomarcadores , Epigênese Genética , MicroRNAs/genética
10.
PLoS Pathog ; 18(10): e1010900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206325

RESUMO

The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Príons , Animais , Ovinos , Bovinos , Camundongos , Humanos , Suínos , Encefalopatia Espongiforme Bovina/patologia , Camundongos Transgênicos , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Polissacarídeos/metabolismo , Carneiro Doméstico/metabolismo
11.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806183

RESUMO

Prion diseases are diagnosed in the symptomatic stage, when the neuronal damage is spread throughout the central nervous system (CNS). The assessment of biological features that allow the detection of asymptomatic cases is needed, and, in this context, scrapie, where pre-symptomatic infected animals can be detected through rectal biopsy, becomes a good study model. Neurogranin (Ng) and neurofilament light chain (NfL) are proteins that reflect synaptic and axonal damage and have been studied as cerebrospinal fluid (CSF) biomarkers in different neurodegenerative disorders. In this study, we evaluated Ng and NfL both at the protein and transcript levels in the CNS of preclinical and clinical scrapie-affected sheep compared with healthy controls and assessed their levels in ovine CSF. The correlation between these proteins and the main neuropathological events in prion diseases, PrPSc deposition and spongiosis, was also assessed. The results show a decrease in Ng and NfL at the protein and gene expression levels as the disease progresses, and significant changes between the control and preclinical animals. On the contrary, the CSF levels of NfL increased throughout the progression of the disease. Negative correlations between neuropathological markers of prion disease and the concentration of the studied proteins were also found. Although further research is needed, these results suggest that Ng and NfL could act as biomarkers for neurodegeneration onset and intensity in preclinical cases of scrapie.


Assuntos
Doenças Priônicas , Scrapie , Animais , Biomarcadores/líquido cefalorraquidiano , Filamentos Intermediários , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Doenças Priônicas/líquido cefalorraquidiano , Scrapie/diagnóstico , Ovinos
12.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408945

RESUMO

Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Scrapie , Animais , Encéfalo/metabolismo , Gliose/patologia , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/metabolismo , Scrapie/metabolismo , Ovinos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Transcriptoma
13.
Animals (Basel) ; 12(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268191

RESUMO

Nowadays, there is a great concern about the prevalence of multidrug resistant Enterococcus spp. and Enterobacteriaceae in food-producing animals. The aim of this work was to evaluate the effect of oxytetracycline or enrofloxacin treatment on vancomycin-resistant enterococci (VRE), extended spectrum ß-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae in pigs. A total of 26 piglets were received and distributed in three groups. Group 1 was treated with enrofloxacin (N = 12), group 2 with oxytetracycline (N = 10) and group 3 did not receive any treatment (control group) (N = 4). A higher number of vancomycin-resistant E. faecium were recovered compared to E. faecalis. In the pigs treated with enrofloxacin, vancomycin resistant E. faecium was found in a higher percentage of animals than in the control group. ESBL-producing E. coli was not detected in rectal samples from control animals. However, it was detected in 17-20% of animals treated with oxytetracycline on days 6 to 17 and in 17-50% of the animals treated with enrofloxacin. Carbapenemase-producing E. coli was isolated in animals treated with oxytetracycline, but not in animals treated with enrofloxacin or in the control group. This study highlights that the use of oxytetracycline or enrofloxacin in food-producing animals could select ESBL and carbapenemase-producing E. coli. Further studies shall be needed to validate the results obtained, considering a more robust and extended experimental design.

14.
Front Vet Sci ; 9: 824677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252421

RESUMO

Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are considered good natural animal models of these TSE. Changes in DNA methylation occur in the central nervous system (CNS) of patients suffering from prion-like neurodegenerative diseases, such as Alzheimer's disease. Nevertheless, potential DNA methylation alterations have not yet been investigated in the CNS of any prion disease model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA methylation patterns were studied in the thalamus obtained from sheep naturally infected with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4-6 years). Although the average genomic methylation levels were similar between the control and the scrapie animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39 promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were enriched in genes involved in transmembrane transport and cell adhesion, whereas hypermethylated DMRs were related to intracellular signal transduction genes. Moreover, genes highly expressed in specific types of CNS cells and those previously described to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19, SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed in the genomic study. Altogether, these results suggest a potential regulatory role of DNA methylation in prion neuropathology.

15.
Sci Rep ; 11(1): 17428, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465826

RESUMO

Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8-9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


Assuntos
Encéfalo/patologia , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/patologia , Proteínas PrPSc/metabolismo , Príons/fisiologia , Scrapie/patologia , Animais , Encéfalo/metabolismo , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Masculino , Camundongos , Scrapie/metabolismo , Scrapie/transmissão , Suínos , Porco Miniatura
16.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201940

RESUMO

Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.


Assuntos
Biomarcadores , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/ultraestrutura , MicroRNAs/sangue , MicroRNAs/líquido cefalorraquidiano , Doenças Priônicas/sangue , Doenças Priônicas/líquido cefalorraquidiano
17.
Mol Neurobiol ; 58(10): 5312-5326, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283400

RESUMO

The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease or Alzheimer's disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Assuntos
Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Toxina Tetânica/administração & dosagem , Animais , Encéfalo/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Projetos Piloto , Doenças Priônicas/patologia , Ovinos
18.
Front Med (Lausanne) ; 8: 673408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113639

RESUMO

Background: Antibiotic resistance and impaired wound healing are major concerns in S. aureus superficial skin infections, and new therapies are needed. Antimicrobial photodynamic therapy (aPDT) is a new therapeutic approach for infections, but it also improves healing in many wound models. Objective: To compare the antimicrobial activity and the effects on wound healing of aPDT based on Methylene Blue (MB-aPDT) with mupirocin treatment, either alone or in combination, in superficial skin wounds of S. aureus-infected mice. Additionally, to evaluate the clinical, microbiological, and cosmetic effects on wound healing. Materials and Methods: A superficial skin infection model of S. aureus was established in SKH-1 mice. Infected wounds were treated with MB-aPDT, MB-aPDT with a daily topical mupirocin or only with mupirocin. No treatment was carried out in control animals. Daily clinical and microbiological examinations were performed until complete clinical wound healing. Histopathological studies and statistical analysis were performed at the end of the study. Results: MB-aPDT treatment induced the best wound healing compared to mupirocin alone or to mupirocin plus MB-aPDT. Superficial contraction at 24 h and a greater reduction in size at 48 h, quicker detachment of the crust, less scaling, and absence of scars were observed. Histopathological studies correlated with clinical and gross findings. By contrast, mupirocin showed the highest logaritmic reduction of S. aureus. Conclusions: MB-aPDT and mupirocin treatments are effective in a murine superficial skin infection model of S. aureus. One session of MB-aPDT was the best option for clinical wound healing and cosmetic results. The addition of mupirocin to MB-aPDT treatment improved antimicrobial activity; however, it did not enhance wound healing. No synergistic antibacterial effects were detected.

19.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800240

RESUMO

Neurotrophins constitute a group of growth factor that exerts important functions in the nervous system of vertebrates. They act through two classes of transmembrane receptors: tyrosine-kinase receptors and the p75 neurotrophin receptor (p75NTR). The activation of p75NTR can favor cell survival or apoptosis depending on diverse factors. Several studies evidenced a link between p75NTR and the pathogenesis of prion diseases. In this study, we investigated the distribution of several neurotrophins and their receptors, including p75NTR, in the brain of naturally scrapie-affected sheep and experimentally infected ovinized transgenic mice and its correlation with other markers of prion disease. No evident changes in infected mice or sheep were observed regarding neurotrophins and their receptors except for the immunohistochemistry against p75NTR. Infected mice showed higher abundance of p75NTR immunostained cells than their non-infected counterparts. The astrocytic labeling correlated with other neuropathological alterations of prion disease. Confocal microscopy demonstrated the co-localization of p75NTR and the astrocytic marker GFAP, suggesting an involvement of astrocytes in p75NTR-mediated neurodegeneration. In contrast, p75NTR staining in sheep lacked astrocytic labeling. However, digital image analyses revealed increased labeling intensities in preclinical sheep compared with non-infected and terminal sheep in several brain nuclei. This suggests that this receptor is overexpressed in early stages of prion-related neurodegeneration in sheep. Our results confirm a role of p75NTR in the pathogenesis of classical ovine scrapie in both the natural host and in an experimental transgenic mouse model.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Scrapie/metabolismo , Ovinos/genética , Animais , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Transgênicos , Receptor de Fator de Crescimento Neural/genética , Scrapie/genética , Ovinos/metabolismo
20.
Animals (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921147

RESUMO

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48-72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...