Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(8): 107307, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559898

RESUMO

The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.

2.
Acta Parasitol ; 66(3): 1063-1067, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33566302

RESUMO

PURPOSE: Restored role of the grey wolf in ecological networks of newly recolonized areas can be studied via surveys of parasite communities of this predator. As helminths circulating in multi-host systems, the tapeworms directly reflect wolves' diet, while some species are also important from the One Health perspective. The Czech experienced centuries of wolves' absence, however, now it is situated on the crossroad of recolonising wolves' populations, which is opening questions of their role in ecological networks in this area and thus in sylvatic cycles of heteroxenous parasites. METHODS: Five wolf carcasses from this area were obtained and genetic affinity to a particular population was inspected. Tapeworms isolated from wolves' intestines during necropsies were molecularly identified based on sequences of COI marker. RESULTS: Three wolf haplotypes (w1, w2, w14) correspond with the dominance of haplogroup 1 (w1, w2) within Central European lowland population and haplogroup 2 (w14) within the Carpathian population. Two Taenia spp. were revealed: T. krabbei in Central European population wolves and T. hydatigena in an individual from Carpathian population. CONCLUSIONS: The results serve as a base for future monitoring and studies of the recolonising wolf population and its impact on ecosystems in the studied area to contribute to the hypothesis about differentiation of parasite communities in particular wolf population and higher parasite diversity and richness in established populations in comparison to newly settled ones.


Assuntos
Helmintos , Taenia , Lobos , Animais , Ecossistema , Europa (Continente)
3.
Animals (Basel) ; 10(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825208

RESUMO

Hedgehogs are among the most abundant species to be found within wildlife shelters and after successful rehabilitation they are frequently translocated. The effects and potential impact of these translocations on gene flow within wild populations are largely unknown. In this study, different wild hedgehog populations were compared with artificially created "shelter populations", with regard to their genetic diversity, in order to establish basic data for future inferences on the genetic impact of hedgehog translocations. Observed populations are located within central Europe, including the species Erinaceus europaeus and E. roumanicus. Shelters were mainly hosting one species; in one case, both species were present syntopically. Apart from one exception, the results did not show a higher genetic diversity within shelter populations, indicating that individuals did not originate from a wider geographical area than individuals grouped into one of the wild populations. Two shelters from Innsbruck hosted individuals that belonged to two potential clusters, as indicated in a distance analysis. When such a structure stems from the effects of landscape elements like large rivers, the shelter management-related translocations might lead to homogenization across the dispersal barrier.

4.
Sci Rep ; 9(1): 19003, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831858

RESUMO

Local extinction and recolonization events can shape genetic structure of subdivided animal populations. The gray wolf (Canis lupus) was extirpated from most of Europe, but recently recolonized big part of its historical range. An exceptionally dynamic expansion of wolf population is observed in the western part of the Great European Plain. Nonetheless, genetic consequences of this process have not yet been fully understood. We aimed to assess genetic diversity of this recently established wolf population in Western Poland (WPL), determine its origin and provide novel data regarding the population genetic structure of the grey wolf in Central Europe. We utilized both spatially explicit and non-explicit Bayesian clustering approaches, as well as a model-independent, multivariate method DAPC, to infer genetic structure in large dataset (881 identified individuals) of wolf microsatellite genotypes. To put the patterns observed in studied population into a broader biogeographic context we also analyzed a mtDNA control region fragment widely used in previous studies. In comparison to a source population, we found slightly reduced allelic richness and heterozygosity in the newly recolonized areas west of the Vistula river. We discovered relatively strong west-east structuring in lowland wolves, probably reflecting founder-flush and allele surfing during range expansion, resulting in clear distinction of WPL, eastern lowland and Carpathian genetic groups. Interestingly, wolves from recently recolonized mountainous areas (Sudetes Mts, SW Poland) clustered together with lowland, but not Carpathian wolf populations. We also identified an area in Central Poland that seems to be a melting pot of western, lowland eastern and Carpathian wolves. We conclude that the process of dynamic recolonization of Central European lowlands lead to the formation of a new, genetically distinct wolf population. Together with the settlement and establishment of packs in mountains by lowland wolves and vice versa, it suggests that demographic dynamics and possibly anthropogenic barriers rather than ecological factors (e.g. natal habitat-biased dispersal patterns) shape the current wolf genetic structure in Central Europe.


Assuntos
Migração Animal/fisiologia , Ecossistema , Genética Populacional , Lobos/genética , Animais , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Geografia , Haplótipos/genética , Repetições de Microssatélites/genética
5.
BMC Genomics ; 19(1): 533, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005602

RESUMO

BACKGROUND: Genomic methods can provide extraordinary tools to explore the genetic background of wild species and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly popular across Europe. RESULTS: Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300 genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene, which has been described as a candidate gene for the latter trait in dogs. CONCLUSIONS: In this study we successfully applied genome-wide procedures to reconstruct the history of the Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with wolves and uncontrolled trades of recent and undeclared wolfdog hybrids.


Assuntos
Cães/genética , Genoma , Lobos/genética , Animais , Teorema de Bayes , Catecol O-Metiltransferase/genética , Ritmo Circadiano/genética , Tchecoslováquia , DNA/isolamento & purificação , DNA/metabolismo , Ontologia Genética , Genética Populacional , Hibridização Genética , Desequilíbrio de Ligação , Metabolismo dos Lipídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
6.
PLoS One ; 12(5): e0176560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489863

RESUMO

The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genótipo , Lobos/genética , Animais , Genética Populacional , Haplótipos , Itália , Filogenia
7.
Zoo Biol ; 35(2): 147-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26741794

RESUMO

Almost nothing is known about the natural vocal behavior of lesser galagos living in zoos. This is perhaps because they are usually kept in nocturnal exhibits separated from the visitors by a transparent and acoustically insulating glass barrier. The aim of the present study was therefore to fill this gap in knowledge of the vocal behavior of lesser galagos from zoos. This knowledge might be beneficial because the vocalizations of these small primates can be used for species determination. We performed a 10-day-long acoustic monitoring of vocal activity in each of seven various groups of Galago senegalensis and G. moholi living at four zoos. We quantitatively evaluated the occurrence of four loud vocalization types present in both species, including the most species-specific advertisement call. We found that qualitative as well as quantitative differences exist in the vocal behavior of the studied groups. We confirmed that the observed vocalization types can be collected from lesser galagos living at zoos, and the success can be increased by selecting larger and more diverse groups. We found two distinct patterns of diel vocal activity in the most vocally active groups. G. senegalensis groups were most vocally active at the beginning and at the end of their activity period, whereas one G. moholi group showed an opposite pattern. The latter is surprising, as it is generally accepted that lesser galagos emit advertisement calls especially at dawn and dusk, i.e., at the beginning and at the end of their diel activity.


Assuntos
Animais de Zoológico/fisiologia , Galago/fisiologia , Vocalização Animal/fisiologia , Animais
8.
Ticks Tick Borne Dis ; 6(1): 38-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25311899

RESUMO

Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), one of the most important human neuroinfections across Eurasia. Up to date, only three full genome sequences of human European TBEV isolates are available, mostly due to difficulties with isolation of the virus from human patients. Here we present full genome characterization of an additional five low-passage TBEV strains isolated from human patients with severe forms of TBE. These strains were isolated in 1953 within Central Bohemia in the former Czechoslovakia, and belong to the historically oldest human TBEV isolates in Europe. We demonstrate here that all analyzed isolates are distantly phylogenetically related, indicating that the emergence of TBE in Central Europe was not caused by one predominant strain, but rather a pool of distantly related TBEV strains. Nucleotide identity between individual sequenced TBEV strains ranged from 97.5% to 99.6% and all strains shared large deletions in the 3' non-coding region, which has been recently suggested to be an important determinant of virulence. The number of unique amino acid substitutions varied from 3 to 9 in individual isolates, but no characteristic amino acid substitution typical exclusively for all human TBEV isolates was identified when compared to the isolates from ticks. We did, however, correlate that the exploration of the TBEV envelope glycoprotein by specific antibodies were in close proximity to these unique amino acid substitutions. Taken together, we report here the largest number of patient-derived European TBEV full genome sequences to date and provide a platform for further studies on evolution of TBEV since the first emergence of human TBE in Europe.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/virologia , Genoma Viral/genética , Substituição de Aminoácidos , Sequência de Bases , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Europa (Continente) , Humanos , Modelos Estruturais , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
9.
PLoS One ; 9(1): e86409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466077

RESUMO

Hybridization and introgression can impact the evolution of natural populations. Several wild canid species hybridize in nature, sometimes originating new taxa. However, hybridization with free-ranging dogs is threatening the genetic integrity of grey wolf populations (Canis lupus), or even the survival of endangered species (e.g., the Ethiopian wolf C. simensis). Efficient molecular tools to assess hybridization rates are essential in wolf conservation strategies. We evaluated the power of biparental and uniparental markers (39 autosomal and 4 Y-linked microsatellites, a melanistic deletion at the ß-defensin CBD103 gene, the hypervariable domain of the mtDNA control-region) to identify the multilocus admixture patterns in wolf x dog hybrids. We used empirical data from 2 hybrid groups with different histories: 30 presumptive natural hybrids from Italy and 73 Czechoslovakian wolfdogs of known hybrid origin, as well as simulated data. We assessed the efficiency of various marker combinations and reference samples in admixture analyses using 69 dogs of different breeds and 99 wolves from Italy, Balkans and Carpathian Mountains. Results confirmed the occurrence of hybrids in Italy, some of them showing anomalous phenotypic traits and exogenous mtDNA or Y-chromosome introgression. Hybridization was mostly attributable to village dogs and not strictly patrilineal. The melanistic ß-defensin deletion was found only in Italian dogs and in putative hybrids. The 24 most divergent microsatellites (largest wolf-dog FST values) were equally or more informative than the entire panel of 39 loci. A smaller panel of 12 microsatellites increased risks to identify false admixed individuals. The frequency of F1 and F2 was lower than backcrosses or introgressed individuals, suggesting hybridization already occurred some generations in the past, during early phases of wolf expansion from their historical core areas. Empirical and simulated data indicated the identification of the past generation backcrosses is always uncertain, and a larger number of ancestry-informative markers is needed.


Assuntos
Marcadores Genéticos , Hibridização Genética , Tipagem de Sequências Multilocus , Animais , Análise por Conglomerados , DNA Mitocondrial , Cães , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Genótipo , Itália , Masculino , Repetições de Microssatélites , Lobos , Cromossomo Y , beta-Defensinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...