Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Neurobiol ; 74(12): 1210-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24909306

RESUMO

Accumulations of Tau, a microtubule-associated protein (MAP), into neurofibrillary tangles is a hallmark of Alzheimer's disease and other tauopathies. However, the mechanisms leading to this pathology are still unclear: the aggregates themselves could be toxic or the sequestration of Tau into tangles might prevent Tau from fulfilling its normal functions, thereby inducing a loss of function defect. Surprisingly, the consequences of losing normal Tau expression in vivo are still not well understood, in part due to the fact that Tau knockout mice show only subtle phenotypes, presumably due to the fact that mammals express several MAPs with partially overlapping functions. In contrast, flies express fewer MAP, with Tau being the only member of the Tau/MAP2/MAP4 family. Therefore, we used Drosophila to address the physiological consequences caused by the loss of Tau. Reducing the levels of fly Tau (dTau) ubiquitously resulted in developmental lethality, whereas deleting Tau specifically in neurons or the eye caused progressive neurodegeneration. Similarly, chromosomal mutations affecting dTau also caused progressive degeneration in both the eye and brain. Although photoreceptor cells initially developed normally in dTau knockdown animals, they subsequently degenerated during late pupal stages whereas weaker dTau alleles caused an age-dependent defect in rhabdomere structure. Expression of wild type human Tau partially rescued the neurodegenerative phenotype caused by the loss of endogenous dTau, suggesting that the functions of Tau proteins are functionally conserved from flies to humans.


Assuntos
Proteínas de Drosophila/deficiência , Degeneração Neural/fisiopatologia , Células Fotorreceptoras de Invertebrados/fisiologia , Degeneração Retiniana/fisiopatologia , Proteínas tau/deficiência , Proteínas tau/metabolismo , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Axônios/patologia , Axônios/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Drosophila , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mutação , Degeneração Neural/patologia , Células Fotorreceptoras de Invertebrados/patologia , Isoformas de Proteínas , Degeneração Retiniana/patologia , Proteínas tau/genética
2.
PLoS One ; 9(2): e89847, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587072

RESUMO

loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Mutação/genética , Neurônios/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas/metabolismo , Análise de Variância , Animais , Western Blotting , Sobrevivência Celular/fisiologia , Citoesqueleto/metabolismo , Drosophila/metabolismo , Feminino , Microscopia de Fluorescência , Polimerização , Prenilação de Proteína , Estabilidade Proteica , Transdução de Sinais/genética
3.
J Neurosci ; 32(46): 16181-92, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152602

RESUMO

ß-secretase (or BACE1) is the key enzyme in the production of ß-amyloid (Aß), which accumulates in the senile plaques characteristic for Alzheimer's disease. Consequently, the lack of BACE1 prevents ß-processing of the amyloid precursor protein and Aß production, which made it a promising target for drug development. However, the loss of BACE1 is also detrimental, leading to myelination defects and altered neuronal activity, functions that have been associated with the cleavage of Neuregulin and a voltage-gated sodium channel subunit. Here we show that the Drosophila ortholog of BACE, dBACE, is required for glial survival. Cell-specific knockdown experiments reveal that this is a non-cell autonomous function, as a knockdown of dBACE in photoreceptor neurons leads to progressive degeneration of glia in their target zone, the lamina. Interestingly, this phenotype is suppressed by the loss of the fly amyloid precursor protein (APPL), whereas a secretion-deficient form of APPL enhances the degeneration. This shows that full-length APPL in neurons promotes the death of neighboring glial cells and that ß-processing of APPL is needed to prevent glial death. These results therefore not only demonstrate a novel function for an APP protein in glia, but they also show this function specifically requires regulation by ß-cleavage.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Sobrevivência Celular/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Axônios/fisiologia , Western Blotting , Morte Celular/fisiologia , Movimento Celular/fisiologia , Imuno-Histoquímica , Microscopia Eletrônica , Neurregulinas/genética , Neurregulinas/fisiologia , Reação em Cadeia da Polimerase , RNA/biossíntese , RNA/genética , Interferência de RNA/fisiologia , Retina/citologia , Retina/fisiologia , Vacúolos/ultraestrutura
4.
Neurobiol Dis ; 46(1): 78-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266106

RESUMO

The processing of Amyloid Precursor Proteins (APPs) results in several fragments, including soluble N-terminal ectodomains (sAPPs) and C-terminal intracellular domains (AICD). sAPPs have been ascribed neurotrophic or neuroprotective functions in cell culture, although ß-cleaved sAPPs can have deleterious effects and trigger neuronal cell death. Here we describe a neuroproprotective function of APP and fly APPL (Amyloid Precursor Protein-like) in vivo in several Drosophila mutants with progressive neurodegeneration. We show that expression of the N-terminal ectodomain is sufficient to suppress the progressive degeneration in these mutants and that the secretion of the ectodomain is required for this function. In addition, a protective effect is achieved by expressing kuzbanian (which has α-secretase activity) whereas expression of fly and human BACE aggravates the phenotypes, suggesting that the protective function is specifically mediated by the α-cleaved ectodomain. Furthermore, genetic and molecular studies suggest that the N-terminal fragments interact with full-length APPL activating a downstream signaling pathway via the AICD. Because we show protective effects in mutants that affect different genes (AMP-activated protein kinase, MAP1b, rasGAP), we propose that the protective effect is not due to a genetic interaction between APPL and these genes but a more general aspect of APP proteins. The result that APP proteins and specifically their soluble α-cleaved ectodomains can protect against progressive neurodegeneration in vivo provides support for the hypothesis that a disruption of the physiological function of APP could play a role in the pathogenesis of Alzheimer's Disease.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Estrutura Terciária de Proteína/fisiologia
5.
Genetics ; 177(4): 2233-41, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17947412

RESUMO

Matings between D. melanogaster females and males of sibling species in the D. melanogaster complex yield hybrid males that die prior to pupal differentiation. We have reexamined a previous report suggesting that the developmental defects in these lethal hybrid males reflect a failure in cell proliferation that may be the consequence of problems in mitotic chromosome condensation. We also observed a failure in cell proliferation, but find in contrast that the frequencies of mitotic figures and of nuclei staining for the mitotic marker phosphohistone H3 in the brains of hybrid male larvae are extremely low. We also found that very few of these brain cells in male hybrids are in S phase, as determined by BrdU incorporation. These data suggest that cells in hybrid males are arrested in either the G(1) or G(2) phases of the cell cycle. The cells in hybrid male brains appear to be particularly sensitive to environmental stress; our results indicate that certain in vitro incubation conditions induce widespread cellular necrosis in these brains, causing an abnormal nuclear morphology noted by previous investigators. We also document that hybrid larvae develop very slowly, particularly during the second larval instar. Finally, we found that the frequency of mitotic figures in hybrid male larvae mutant for Hybrid male rescue (Hmr) is increased relative to lethal hybrid males, although not to wild-type levels, and that chromosome morphology in Hmr(-) hybrid males is also not completely normal.


Assuntos
Ciclo Celular , Quimera , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Animais , Encéfalo/patologia , Aberrações Cromossômicas , Crescimento e Desenvolvimento , Larva/citologia , Masculino , Mitose , Necrose
6.
Development ; 134(11): 2183-93, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17507418

RESUMO

We have isolated lethal mutations in the Drosophila lkb1 gene (dlkb1), the homolog of C. elegans par-4 and human LKB1 (STK11), which is mutated in Peutz-Jeghers syndrome. We show that these mutations disrupt spindle formation, resulting in frequent polyploid cells in larval brains. In addition, dlkb1 mutations affect asymmetric division of larval neuroblasts (NBs); they suppress unequal cytokinesis, abrogate proper localization of Bazooka, Par-6, DaPKC and Miranda, but affect neither Pins/Galphai localization nor spindle rotation. Most aspects of the dlkb1 phenotype are exacerbated in dlkb1 pins double mutants, which exhibit more severe defects than those observed in either single mutant. This suggests that Dlkb1 and Pins act in partially redundant pathways to control the asymmetry of NB divisions. Our results also indicate that Dlkb1 and Pins function in parallel pathways controlling the stability of spindle microtubules. The finding that Dlkb1 mediates both the geometry of stem cell division and chromosome segregation provides novel insight into the mechanisms underlying tumor formation in Peutz-Jeghers patients.


Assuntos
Encéfalo/embriologia , Citocinese/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Neurônios/citologia , Proteínas Quinases/metabolismo , Fuso Acromático/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Encéfalo/metabolismo , Citocinese/genética , Drosophila/genética , Proteínas de Drosophila/genética , Immunoblotting , Microscopia de Fluorescência , Mutação/genética , Neurônios/metabolismo , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/fisiopatologia , Proteínas Quinases/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...