Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 13(7): 4284-4294, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456296

RESUMO

Background: Diffuse parenchymal liver diseases are contributing substantially to global morbidity and represent major causes of deaths worldwide. The aim of our study is to assess whether established hepatic fat and iron quantitation and relaxometry-based quantification of hepatocyte-specific contrast material as surrogate for liver function estimation allows to evaluate liver fibrosis. Methods: Retrospective consecutive study. Seventy-two healthy patients (mean age: 53 years) without known liver disease, 21 patients with temporary elevated liver enzymes (mean: 65 years) and 109 patients with biopsy proven liver fibrosis or cirrhosis (mean: 61 years), who underwent liver magnetic resonance imaging (MRI) with a hepatocyte-specific contrast agent [gadoxetate disodium, gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), 0.25 mmol/mL Primovist, Bayer AG, Leverkusen, Germany] at 1.5 T (n=133) and at 3 T (n=69), were included. Fibrosis was classified using the histopathological meta-analysis of histological data in viral hepatitis (METAVIR) and the clinical Child-Pugh scores. Gd-concentration were quantified using T1 map-based calculations. Gd-concentration mapping was performed by using a Look-Locker approach prior to and 912±159 s after intravenous administration of hepatocyte specific contrast agent. Additionally, parenchymal fat fraction, R2*, bilirubin, gender and age were defined as predicting factors. Diagnostic accuracy was calculated in a monoparametric (linear regression, predictor: Gd-concentration) and multiparametric model (predictors: age, bilirubin level, iron overload, liver fat fraction, Gd concentration in the left and right liver lobe). Results: Mean Gd-concentration in the liver parenchyma was significantly higher for healthy patients ([Gd] =0.51 µmol/L) than for those with liver fibrosis or cirrhosis ([Gd] =0.31 µmol/L; P<0.0001) and with acute liver disease ([Gd] =0.28 µmol/L), though there were no significant differences for the latter two groups. There was a significant moderate negative correlation for the mean Gd-concentration and the METAVIR score (ρ=-0.44, P<0.0001) as well as for the Child-Pugh stage (ρ=-0.35, P<0.0001). There was a significant strong correlation between the bilirubin concentration and the Gd-concentration (ρ=-0.61, P<0.0001). The diagnostic accuracy for the discrimination of healthy patients and patients with known fibrosis or cirrhosis was 0.74 (0.71/0.60 sensitivity/specificity) in a monoparametric and 0.76 (0.85/0.61 sensitivity/specificity) in a machine learning based multiparametric model. Conclusions: T1 mapping-based quantification of hepatic Gd-EOB-DTPA concentrations performed in a multiparametric model shows promising diagnostic accuracy for the detection of fibrotic changes. Liver biopsy might be replaced by imaging examinations.

2.
Eur Radiol ; 32(1): 346-354, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34324024

RESUMO

OBJECTIVES: The goal of this study was to investigate the precise timeline of respiratory events occurring after the administration of two gadolinium-based contrast agents, gadoxetate disodium and gadoterate meglumine. MATERIALS AND METHODS: This retrospective study examined 497 patients subject to hepatobiliary imaging using the GRASP MRI technique (TR/TE = 4/2 ms; ST = 2.5 mm; 384 × 384 mm). Imaging was performed after administration of gadoxetate (N = 338) and gadoterate (N = 159). All GRASP datasets were reconstructed using a temporal resolution of 1 s. Four regions-of-interest (ROIs) were placed in the liver dome, the right and left cardiac ventricle, and abdominal aorta detecting liver displacement and increasing vascular signal intensities over time. Changes in hepatic intensity reflected respiratory dynamics in temporal correlation to the vascular contrast bolus. RESULTS: In total, 216 (67%) and 41 (28%) patients presented with transient respiratory motion after administration of gadoxetate and gadoterate, respectively. The mean duration from start to acme of the respiratory episode was similar (p = 0.4) between gadoxetate (6.0 s) and gadoterate (5.6 s). Its mean onset in reference to contrast arrival in the right ventricle differed significantly (p < 0.001) between gadoxetate (15.3s) and gadoterate (1.8 s), analogously to peak inspiration timepoint in reference to the aortic enhancement arrival (gadoxetate: 0.9s after, gadoterate: 11.2 s before aortic enhancement, p < 0.001). CONCLUSIONS: The timepoint of occurrence of transient respiratory anomalies associated with gadoxetate disodium and gadoterate meglumine differs significantly between both contrast agents while the duration of the event remains similar. KEY POINTS: • Transient respiratory anomalies following the administration of gadoterate meglumine occurred during a time period usually not acquired in MR imaging. • Transient respiratory anomalies following the administration of gadoxetate disodium occurred around the initiation of arterial phase imaging. • The estimated duration of respiratory events was similar between both contrast agents.


Assuntos
Gadolínio DTPA , Compostos Organometálicos , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética , Meglumina , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...