Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(3): 300-301, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484709

RESUMO

Antibiotic resistance is often studied in vitro, limiting the understanding of in vivo mechanisms that affect antibiotic treatment. In this issue of Cell Host & Microbe, Rodrigues et al. show that specific mutations allow bacteria to invade intestinal cells in a mouse model, thereby evading antibiotic treatment.


Assuntos
Antibacterianos , Escherichia coli , Animais , Camundongos , Escherichia coli/genética , Antibacterianos/farmacologia , Intestinos , Bactérias , Resistência Microbiana a Medicamentos
3.
Curr Opin Microbiol ; 74: 102333, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276805

RESUMO

How microbes interact with their environment and how the complex interplay of their genes enables them to survive and thrive under stress is a fundamental question in microbial system biology, which is also important from a public health perspective. Large-scale studies of gene-gene, gene-drug, and drug-drug interactions have proven to be powerful tools for elucidating gene function and functional modules in the cell. Approaches that systematically quantify phenotypes in libraries of microbial strains with genome-wide genetic perturbations are crucial for progress in this area. Here, we review recent advances in this field, and point out applications to the study of gene-drug interactions. We highlight newly developed techniques for the rapid generation of genome-wide mutant libraries and the high-throughput measurement of more complex phenotypes and other observables, such as cell morphology or thermal stability of the proteome.


Assuntos
Genoma , Fenótipo
5.
ISME J ; 17(1): 130-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224268

RESUMO

Bacterial transformation, a common mechanism of horizontal gene transfer, can speed up adaptive evolution. How its costs and benefits depend on the growth environment is poorly understood. Here, we characterize the distributions of fitness effects (DFE) of transformation in different conditions and test whether they predict in which condition transformation is beneficial. To determine the DFEs, we generate hybrid libraries between the recipient Bacillus subtilis and different donor species and measure the selection coefficient of each hybrid strain. In complex medium, the donor Bacillus vallismortis confers larger fitness effects than the more closely related donor Bacillus spizizenii. For both donors, the DFEs show strong effect beneficial transfers, indicating potential for fast adaptive evolution. While some transfers of B. vallismortis DNA show pleiotropic effects, various transfers are beneficial only under a single growth condition, indicating that the recipient can benefit from a variety of donor genes to adapt to varying growth conditions. We scrutinize the predictive value of the DFEs by laboratory evolution under different growth conditions and show that the DFEs correctly predict the condition at which transformation confers a benefit. We conclude that transformation has a strong potential for speeding up adaptation to varying environments by profiting from a gene pool shared between closely related species.


Assuntos
Bacillus subtilis , Transferência Genética Horizontal , Bacillus subtilis/genética , Adaptação Fisiológica
6.
Mol Syst Biol ; 18(9): e10490, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36124745

RESUMO

Dose-response relationships are a general concept for quantitatively describing biological systems across multiple scales, from the molecular to the whole-cell level. A clinically relevant example is the bacterial growth response to antibiotics, which is routinely characterized by dose-response curves. The shape of the dose-response curve varies drastically between antibiotics and plays a key role in treatment, drug interactions, and resistance evolution. However, the mechanisms shaping the dose-response curve remain largely unclear. Here, we show in Escherichia coli that the distinctively shallow dose-response curve of the antibiotic trimethoprim is caused by a negative growth-mediated feedback loop: Trimethoprim slows growth, which in turn weakens the effect of this antibiotic. At the molecular level, this feedback is caused by the upregulation of the drug target dihydrofolate reductase (FolA/DHFR). We show that this upregulation is not a specific response to trimethoprim but follows a universal trend line that depends primarily on the growth rate, irrespective of its cause. Rewiring the feedback loop alters the dose-response curve in a predictable manner, which we corroborate using a mathematical model of cellular resource allocation and growth. Our results indicate that growth-mediated feedback loops may shape drug responses more generally and could be exploited to design evolutionary traps that enable selection against drug resistance.


Assuntos
Antibacterianos , Tetra-Hidrofolato Desidrogenase , Antibacterianos/farmacologia , Escherichia coli/genética , Retroalimentação , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/farmacologia , Trimetoprima/farmacologia
8.
Nature ; 605(7908): 113-118, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35444278

RESUMO

Intragenic regions that are removed during maturation of the RNA transcript-introns-are universally present in the nuclear genomes of eukaryotes1. The budding yeast, an otherwise intron-poor species, preserves two sets of ribosomal protein genes that differ primarily in their introns2,3. Although studies have shed light on the role of ribosomal protein introns under stress and starvation4-6, understanding the contribution of introns to ribosome regulation remains challenging. Here, by combining isogrowth profiling7 with single-cell protein measurements8, we show that introns can mediate inducible phenotypic heterogeneity that confers a clear fitness advantage. Osmotic stress leads to bimodal expression of the small ribosomal subunit protein Rps22B, which is mediated by an intron in the 5' untranslated region of its transcript. The two resulting yeast subpopulations differ in their ability to cope with starvation. Low levels of Rps22B protein result in prolonged survival under sustained starvation, whereas high levels of Rps22B enable cells to grow faster after transient starvation. Furthermore, yeasts growing at high concentrations of sugar, similar to those in ripe grapes, exhibit bimodal expression of Rps22B when approaching the stationary phase. Differential intron-mediated regulation of ribosomal protein genes thus provides a way to diversify the population when starvation threatens in natural environments. Our findings reveal a role for introns in inducing phenotypic heterogeneity in changing environments, and suggest that duplicated ribosomal protein genes in yeast contribute to resolving the evolutionary conflict between precise expression control and environmental responsiveness9.


Assuntos
Proteínas Ribossômicas , Saccharomyces cerevisiae , Regiões 5' não Traduzidas , Evolução Biológica , Meio Ambiente , Expressão Gênica , Genoma , Íntrons/genética , Fenótipo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Nat Rev Microbiol ; 20(8): 478-490, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35241807

RESUMO

Several promising strategies based on combining or cycling different antibiotics have been proposed to increase efficacy and counteract resistance evolution, but we still lack a deep understanding of the physiological responses and genetic mechanisms that underlie antibiotic interactions and the clinical applicability of these strategies. In antibiotic-exposed bacteria, the combined effects of physiological stress responses and emerging resistance mutations (occurring at different time scales) generate complex and often unpredictable dynamics. In this Review, we present our current understanding of bacterial cell physiology and genetics of responses to antibiotics. We emphasize recently discovered mechanisms of synergistic and antagonistic drug interactions, hysteresis in temporal interactions between antibiotics that arise from microbial physiology and interactions between antibiotics and resistance mutations that can cause collateral sensitivity or cross-resistance. We discuss possible connections between the different phenomena and indicate relevant research directions. A better and more unified understanding of drug and genetic interactions is likely to advance antibiotic therapy.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
10.
Front Microbiol ; 12: 760017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745067

RESUMO

Understanding interactions between antibiotics used in combination is an important theme in microbiology. Using the interactions between the antifolate drug trimethoprim and the ribosome-targeting antibiotic erythromycin in Escherichia coli as a model, we applied a transcriptomic approach for dissecting interactions between two antibiotics with different modes of action. When trimethoprim and erythromycin were combined, the transcriptional response of genes from the sulfate reduction pathway deviated from the dominant effect of trimethoprim on the transcriptome. We successfully altered the drug interaction from additivity to suppression by increasing the sulfate level in the growth environment and identified sulfate reduction as an important metabolic determinant that shapes the interaction between the two drugs. Our work highlights the potential of using prioritization of gene expression patterns as a tool for identifying key metabolic determinants that shape drug-drug interactions. We further demonstrated that the sigma factor-binding protein gene crl shapes the interactions between the two antibiotics, which provides a rare example of how naturally occurring variations between strains of the same bacterial species can sometimes generate very different drug interactions.

11.
PLoS Comput Biol ; 17(2): e1008635, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556059

RESUMO

Many ecological studies employ general models that can feature an arbitrary number of populations. A critical requirement imposed on such models is clone consistency: If the individuals from two populations are indistinguishable, joining these populations into one shall not affect the outcome of the model. Otherwise a model produces different outcomes for the same scenario. Using functional analysis, we comprehensively characterize all clone-consistent models: We prove that they are necessarily composed from basic building blocks, namely linear combinations of parameters and abundances. These strong constraints enable a straightforward validation of model consistency. Although clone consistency can always be achieved with sufficient assumptions, we argue that it is important to explicitly name and consider the assumptions made: They may not be justified or limit the applicability of models and the generality of the results obtained with them. Moreover, our insights facilitate building new clone-consistent models, which we illustrate for a data-driven model of microbial communities. Finally, our insights point to new relevant forms of general models for theoretical ecology. Our framework thus provides a systematic way of comprehending ecological models, which can guide a wide range of studies.


Assuntos
Células Clonais , Ecologia/métodos , Ecossistema , Algoritmos , Animais , Simulação por Computador , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório , Resultado do Tratamento
12.
PLoS Comput Biol ; 17(1): e1008529, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411759

RESUMO

Phenomenological relations such as Ohm's or Fourier's law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial "growth laws," which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.


Assuntos
Antibacterianos/farmacologia , Bactérias , Interações Medicamentosas/fisiologia , Modelos Biológicos , Bactérias/efeitos dos fármacos , Bactérias/genética , Fenômenos Biofísicos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Retroalimentação Fisiológica/efeitos dos fármacos , Ribossomos/efeitos dos fármacos
13.
Nat Commun ; 11(1): 4013, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782250

RESUMO

Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks": points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology.


Assuntos
Antibacterianos/farmacologia , Modelos Teóricos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Interações Medicamentosas , Epistasia Genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
14.
Nat Commun ; 11(1): 3105, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561723

RESUMO

Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics.


Assuntos
Antibacterianos/farmacologia , Evolução Molecular Direcionada/métodos , Resistência Microbiana a Medicamentos/genética , Epistasia Genética , Escherichia coli K12/genética , Escherichia coli K12/efeitos dos fármacos , Deleção de Genes , Genes Bacterianos/genética , Seleção Genética/efeitos dos fármacos
15.
Cell Syst ; 9(5): 423-433.e3, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31734160

RESUMO

Effective design of combination therapies requires understanding the changes in cell physiology that result from drug interactions. Here, we show that the genome-wide transcriptional response to combinations of two drugs, measured at a rigorously controlled growth rate, can predict higher-order antagonism with a third drug in Saccharomyces cerevisiae. Using isogrowth profiling, over 90% of the variation in cellular response can be decomposed into three principal components (PCs) that have clear biological interpretations. We demonstrate that the third PC captures emergent transcriptional programs that are dependent on both drugs and can predict antagonism with a third drug targeting the emergent pathway. We further show that emergent gene expression patterns are most pronounced at a drug ratio where the drug interaction is strongest, providing a guideline for future measurements. Our results provide a readily applicable recipe for uncovering emergent responses in other systems and for higher-order drug combinations. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Interações Medicamentosas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Biomarcadores Farmacológicos , Combinação de Medicamentos , Interações Medicamentosas/fisiologia , Quimioterapia Combinada/métodos , Expressão Gênica/efeitos dos fármacos , Análise de Componente Principal/métodos
16.
Mol Syst Biol ; 15(2): e8470, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765425

RESUMO

Sudden stress often triggers diverse, temporally structured gene expression responses in microbes, but it is largely unknown how variable in time such responses are and if genes respond in the same temporal order in every single cell. Here, we quantified timing variability of individual promoters responding to sublethal antibiotic stress using fluorescent reporters, microfluidics, and time-lapse microscopy. We identified lower and upper bounds that put definite constraints on timing variability, which varies strongly among promoters and conditions. Timing variability can be interpreted using results from statistical kinetics, which enable us to estimate the number of rate-limiting molecular steps underlying different responses. We found that just a few critical steps control some responses while others rely on dozens of steps. To probe connections between different stress responses, we then tracked the temporal order and response time correlations of promoter pairs in individual cells. Our results support that, when bacteria are exposed to the antibiotic nitrofurantoin, the ensuing oxidative stress and SOS responses are part of the same causal chain of molecular events. In contrast, under trimethoprim, the acid stress response and the SOS response are part of different chains of events running in parallel. Our approach reveals fundamental constraints on gene expression timing and provides new insights into the molecular events that underlie the timing of stress responses.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/genética , Estresse Oxidativo/genética , Resposta SOS em Genética/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Microfluídica/métodos , Estresse Oxidativo/efeitos dos fármacos , Análise de Célula Única/métodos
17.
Proc Natl Acad Sci U S A ; 114(40): 10666-10671, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923953

RESUMO

Polymicrobial infections constitute small ecosystems that accommodate several bacterial species. Commonly, these bacteria are investigated in isolation. However, it is unknown to what extent the isolates interact and whether their interactions alter bacterial growth and ecosystem resilience in the presence and absence of antibiotics. We quantified the complete ecological interaction network for 72 bacterial isolates collected from 23 individuals diagnosed with polymicrobial urinary tract infections and found that most interactions cluster based on evolutionary relatedness. Statistical network analysis revealed that competitive and cooperative reciprocal interactions are enriched in the global network, while cooperative interactions are depleted in the individual host community networks. A population dynamics model parameterized by our measurements suggests that interactions restrict community stability, explaining the observed species diversity of these communities. We further show that the clinical isolates frequently protect each other from clinically relevant antibiotics. Together, these results highlight that ecological interactions are crucial for the growth and survival of bacteria in polymicrobial infection communities and affect their assembly and resilience.


Assuntos
Bactérias , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana , Consórcios Microbianos , Infecções Urinárias/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Feminino , Humanos , Masculino
18.
Science ; 356(6345): 1379-1383, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663499

RESUMO

Like many developing tissues, the vertebrate neural tube is patterned by antiparallel morphogen gradients. To understand how these inputs are interpreted, we measured morphogen signaling and target gene expression in mouse embryos and chick ex vivo assays. From these data, we derived and validated a characteristic decoding map that relates morphogen input to the positional identity of neural progenitors. Analysis of the observed responses indicates that the underlying interpretation strategy minimizes patterning errors in response to the joint input of noisy opposing gradients. We reverse-engineered a transcriptional network that provides a mechanistic basis for the observed cell fate decisions and accounts for the precision and dynamics of pattern formation. Together, our data link opposing gradient dynamics in a growing tissue to precise pattern formation.


Assuntos
Redes Reguladoras de Genes , Tubo Neural/embriologia , Animais , Embrião de Galinha , Embrião de Mamíferos/metabolismo , Camundongos , Morfogênese , Tubo Neural/metabolismo , Fatores de Transcrição/metabolismo
19.
Curr Biol ; 27(9): 1314-1325, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457871

RESUMO

Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable "roads" ensure optimal guidance in vivo.


Assuntos
Quimiocina CCL21/metabolismo , Quimiotaxia , Células Dendríticas/metabolismo , Quinases de Receptores Acoplados a Proteína G/fisiologia , Receptores CCR7/metabolismo , Razão Sinal-Ruído , Animais , Rastreamento de Células , Células Dendríticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
20.
Curr Opin Biotechnol ; 46: 90-97, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28292709

RESUMO

The rising prevalence of antibiotic resistant bacteria is an increasingly serious public health challenge. To address this problem, recent work ranging from clinical studies to theoretical modeling has provided valuable insights into the mechanisms of resistance, its emergence and spread, and ways to counteract it. A deeper understanding of the underlying dynamics of resistance evolution will require a combination of experimental and theoretical expertise from different disciplines and new technology for studying evolution in the laboratory. Here, we review recent advances in the quantitative understanding of the mechanisms and evolution of antibiotic resistance. We focus on key theoretical concepts and new technology that enables well-controlled experiments. We further highlight key challenges that can be met in the near future to ultimately develop effective strategies for combating resistance.


Assuntos
Evolução Molecular Direcionada , Resistência Microbiana a Medicamentos , Bactérias/genética , Fenômenos Fisiológicos Celulares , Resistência Microbiana a Medicamentos/genética , Epistasia Genética , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...