Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 182, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668830

RESUMO

Metal-halide perovskites are revolutionizing the world of X-ray detectors, due to the development of sensitive, fast, and cost-effective devices. Self-powered operation, ensuring portability and low power consumption, has also been recently demonstrated in both bulk materials and thin films. However, the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours, often reporting degradation of the detection performance. Here it is shown that self-powered direct X-ray detectors, fabricated starting from a FAPbBr3 submicrometer-thick film deposition onto a mesoporous TiO2 scaffold, can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss, demonstrating ultra-high operational stability and excellent repeatability. No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy, revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film. In addition, trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy-1 cm-3 at 0 V, an unprecedented value in the field of thin-film-based photoconductors and photodiodes for "hard" X-rays. Finally, prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111015

RESUMO

Thin films based on scandium oxide (Sc2O3) were deposited on silicon substrates to investigate the thickness effect on the reduction of work function. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), energy dispersive X-ray reflectivity (EDXR), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) measurements were performed on the films deposited by electron-beam evaporation with different nominal thicknesses (in the range of 2-50 nm) and in multi-layered mixed structures with barium fluoride (BaF2) films. The obtained results indicate that non-continuous films are required to minimize the work function (down to 2.7 eV at room temperature), thanks to the formation of surface dipole effects between crystalline islands and substrates, even if the stoichiometry is far from the ideal one (Sc/O = 0.38). Finally, the presence of BaF2 in multi-layered films is not beneficial for a further reduction in the work function.

3.
Materials (Basel) ; 16(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36836970

RESUMO

Silver nanoparticles are usually prepared by the reduction of silver cations through chemical and non-sustainable procedures that involve the use of reducing chemical agents. Therefore, many efforts have been made in the search for sustainable alternative methods. Among them, an ultrasound-assisted procedure could be a suitable and sustainable method to afford well-dispersed and nanometric silver particles. This paper describes a sustainable, ultrasound-assisted method using citrate as a reducing agent to prepare silver@hydroxyapatite functionalized calcium carbonate composites. For comparison, an ultrasound-assisted reduction was performed in the presence of NaBH4. The composites obtained in the presence of these two different reducing agents were compared in terms of nanoparticle nature, antimicrobial activity, and cytotoxic activity. The nanoparticle nature was investigated by several techniques, including X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopic measurements, and X-ray photoemission spectroscopy. Nanoparticles with a predominance of Ag or Ag3PO4 were obtained according to the type of reducing agent used. All composites were tested for antimicrobial and antibiofilm activities against Gram-positive and Gram-negative (Staphylococcus aureus and Pseudomonas aeruginosa, respectively) bacteria and for cytotoxicity towards human skin keratinocytes and human fibroblasts. The nature of the nanoparticles, Ag or Ag3PO4, and their predominance seemed to affect the in vitro silver release and the antimicrobial and antibiofilm activities. The composites obtained by the citrate-assisted reduction gave rise to the best results.

4.
Micromachines (Basel) ; 14(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838089

RESUMO

Polycrystalline boron-doped diamond (BDD) films were surface nanotextured by femtosecond pulsed laser irradiation (100 fs duration, 800 nm wavelength, 1.44 J cm-2 single pulse fluence) to analyse the evolution of induced alterations on the surface morphology and structural properties. The aim was to identify the occurrence of laser-induced periodic surface structures (LIPSS) as a function of the number of pulses released on the unit area. Micro-Raman spectroscopy pointed out an increase in the graphite surface content of the films following the laser irradiation due to the formation of ordered carbon sites with respect to the pristine sample. SEM and AFM surface morphology studies allowed the determination of two different types of surface patterning: narrow but highly irregular ripples without a definite spatial periodicity or long-range order for irradiations with relatively low accumulated fluences (<14.4 J cm-2) and coarse but highly regular LIPSS with a spatial periodicity of approximately 630 nm ± 30 nm for higher fluences up to 230.4 J cm-2.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677993

RESUMO

A recent innovation in diamond technology has been the development of the "black diamond" (BD), a material with very high optical absorption generated by processing the diamond surface with a femtosecond laser. In this work, we investigate the optical behavior of the BD samples to prove a near to zero dielectric permittivity in the high electric field condition, where the Frenkel-Poole (FP) effect takes place. Zero-epsilon materials (ENZ), which represent a singularity in optical materials, are expected to lead to remarkable developments in the fields of integrated photonic devices and optical interconnections. Such a result opens the route to the development of BD-based, novel, functional photonic devices.

6.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499821

RESUMO

Surfaces of commercial molybdenum (Mo) plates have been textured by fs-laser treatments with the aim to form low-cost and efficient solar absorbers and substrates for thermionic cathodes in Concentrated Solar Power conversion devices. Morphological (SEM and AFM), optical (spectrophotometry), and structural (Raman spectroscopy) properties of the samples treated at different laser fluences (from 1.8 to 14 J/cm2) have been characterized after the laser treatments and also following long thermal annealing for simulating the operating conditions of thermionic converters. A significant improvement of the solar absorptance and selectivity, with a maximum value of about four times higher than the pristine sample at a temperature of 800 K, has been detected for sample surfaces treated at intermediate fluences. The effects observed have been related to the light trapping capability of the laser-induced nanotexturing, whereas a low selectivity, together with a high absorptance, could be revealed when the highest laser fluence was employed due to a significant presence of oxide species. The ageing process confirms the performance improvement shown when treated samples are used as solar absorbers, even though, due to chemical modification occurring at the surface, a decrease of the solar absorptance takes place. Interestingly, the sample showing the highest quantity of oxides preserves more efficiently the laser texturing. The observation of this behaviour allows to extend the applicability of the laser treatments since, by further nanostructuring of the Mo oxides, it could be beneficial also for sensing applications.

7.
ACS Appl Mater Interfaces ; 14(45): 51496-51509, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318544

RESUMO

Synthetic antiferromagnets with perpendicular magnetic anisotropy (PMA-SAFs) have gained growing attention for both conventional and next-generation spin-based technologies. While the progress of PMA-SAF spintronic devices on rigid substrates has been remarkable, only few examples of flexible thin-film heterostructures are reported in the literature, all containing platinum group metals (PGMs). Systems based on Co/Ni may offer additional advantages with respect to devices containing PGMs, i.e., low damping and high spin polarization. Moreover, limiting the use of PGMs may relieve the demand for critical raw materials and reduce the environmental impact of related technologies, thus contributing to the transition toward a more sustainable future. Here, we discuss for the first time the realization of Co/Ni-based PMA-SAFs on polymer tapes and exploit it to obtain flexible giant magneto-resistive spin valves (GMR-SVs) with perpendicular magnetic anisotropy. Several combinations of buffer and capping layers (i.e., Pt, Pd, and Cu/Ta) are also investigated. High-quality flexible SAFs with a fully compensated antiferromagnetic region and SVs with a sizable GMR ratio (up to 4.4%), in line with the values reported in the literature for similar systems on rigid substrates, were obtained in all cases. However, we demonstrate that PGMs allows achieving the best results when used as a buffer layer, while Cu is the best choice as a capping layer to optimize the properties of the stacks. We justify the role of buffer and capping layers in terms of different interdiffusion mechanisms occurring at the interface between the metallic layers. These results, along with the high robustness of the samples' properties against bending (up to 180°), indicate that complex and bendable Co/Ni-based heterostructures with reduced content of PGMs can be obtained on flexible tapes, allowing for the development of novel flexible and sustainable spintronic devices for applications in many fields including wearable electronics, soft robotics, and biomedicine.

8.
Dalton Trans ; 51(48): 18489-18501, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421057

RESUMO

The optoelectronic features of 3-hydroxyflavone (3HF) self-assembled on the surface of an n-type semiconducting metal oxide (TiO2) and an insulator (Al2O3) are herein investigated. 3HF molecules use the coordinatively unsaturated metal ions present on the oxide surface to form metal complexes, which exhibit different behaviors upon light irradiation, depending on the nature of the metal ion. Specifically, we show that the photoluminescence of the surface species can be modulated according to the chemical properties of the complex (i.e. the binding metal ion), resulting in solid-state emitters in a high quantum yield (about 15%). Furthermore, photoinduced charge injection can be promoted or inhibited, providing a multifunctional hybrid system.


Assuntos
Elétrons , Óxidos , Titânio , Quelantes , Metais/química , Íons
9.
Nanomaterials (Basel) ; 11(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34947625

RESUMO

The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.

10.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578579

RESUMO

In the present work, composite materials very promising for biomedical and pharma-ceutical applications were investigated. They are composed of silver nanoparticles (Ag NPs) in a matrix constituted of calcium carbonate functionalized with hydroxyapatite (HA-FCC). The composites were obtained by different synthesis methods, starting from a mixture of the silver acetate with HA-FCC (using adsorption or mixing in wet conditions methods) and then treating them by exposure to visible light or calcination to promote the silver reduction; a synthetic procedure based on ultrasound-assisted reduction with NaBH4 or citrate was also carried out. The characterization by X-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy analysis also involved the reference sample of HA-FCC matrix. Then the morphology of the Ag NPs and the crystalline structure of HA-FCC were studied by transmission electron microscopy and X-ray diffraction, respectively. To assess the effectiveness of the different methods on silver reduction, the Auger parameters α' were calculated and compared. The use of this methodology based on the Auger parameter is neither trivial nor ordinary. We demonstrate its validity since the different values of this parameter allow to identify the oxidation state of silver and consequently to evaluate the formation yield of metallic Ag NPs in the HA-FCC matrix and the effectiveness of the different reduction methods used.

11.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361390

RESUMO

Materials possessing long-term antibacterial behavior and high cytotoxicity are of extreme interest in several applications, from biomedical devices to food packaging. Furthermore, for the safeguard of the human health and the environment, it is also stringent keeping in mind the need to gather good functional performances with the development of ecofriendly materials and processes. In this study, we propose a green fabrication method for the synthesis of silver nanoparticles supported on oxidized nanocellulose (ONCs), acting as both template and reducing agent. The complete structural and morphological characterization shows that well-dispersed and crystalline Ag nanoparticles of about 10-20 nm were obtained in the cellulose matrix. The antibacterial properties of Ag-nanocomposites (Ag-ONCs) were evaluated through specific Agar diffusion tests against E. coli bacteria, and the results clearly demonstrate that Ag-ONCs possess high long-lasting antibacterial behavior, retained up to 85% growth bacteria inhibition, even after 30 days of incubation. Finally, cell viability assays reveal that Ag-ONCs show a significant cytotoxicity in mouse embryonic fibroblasts.

12.
Sci Rep ; 9(1): 9497, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263164

RESUMO

The demand to increase the sensitivity to magnetic field in a broad magnetic field ranges has led to the research of novel materials for sensor applications. Therefore, the hybrid system consisting of two different magnetoresistive materials - nanostructured Co-doped manganite La1-xSrx(Mn1-yCoy)zO3 and single- and few-layer graphene - were combined and investigated as potential system for magnetic field sensing. The negative colossal magnetoresistance (CMR) of manganite-cobaltite and positive one of graphene gives the possibility to increase the sensitivity to magnetic field of the hybrid sensor. The performed magnetoresistance (MR) measurements of individual few layer (n = 1-5) graphene structures revealed the highest MR values for three-layer graphene (3LG), whereas additional Co-doping increased the MR values of nanostructured manganite films. The connection of 3LG graphene and Co-doped magnanite film in a voltage divider configuration significantly increased the sensitivity of the hybrid sensor at low and intermediate magnetic fields (1-2 T): 70 mV/VT of hybrid sensor in comparison with 56 mV/VT for 3LG and 12 mV/VT for Co-doped magnanite film, respectively, and broadened the magnetic field operation range (0.1-20) T of the produced sensor prototype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...