Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108372

RESUMO

The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA's ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Atrofia , Gangliosidoses GM2/metabolismo , Neuritos/metabolismo , Doença de Sandhoff/terapia , Ácido Ursodesoxicólico/farmacologia , eIF-2 Quinase/metabolismo
2.
Cell Calcium ; 106: 102622, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908318

RESUMO

The accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homoeostasis. If this cannot be done, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as an intracellular messenger, the precise mechanism(s) by which Ca2+ release affects the UPR remains unknown. Tethering a genetically encoded Ca2+ indicator (GCamP6) to the ER membrane revealed novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, induced by tunicamycin (Tm), an N-glycosylation inhibitor, as well as in a cell model deficient in all three inositol triphosphate receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons and that the Ca2+ microdomains impact (PKR)-like-ER kinase (PERK), an UPR sensor, activation. These findings reveal the existence of a Ca2+ signal mechanism by which stressor-mediated Ca2+ release regulates ER stress.


Assuntos
Estresse do Retículo Endoplasmático , eIF-2 Quinase , Apoptose , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
3.
J Vis Exp ; (170)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33970136

RESUMO

The accumulation of unfolded proteins within the endoplasmic reticulum (ER), caused by any stress condition, triggers the unfolded protein response (UPR) through the activation of specialized sensors. UPR attempts first to restore homeostasis; but if damage persists the signaling induces apoptosis. There is increasing evidence that sustained and unresolved ER stress contributes to many pathological conditions including neurodegenerative diseases. Because the UPR controls cell fate by switching between cytoprotective and apoptotic processes, it is essential to understand the events defining this transition, as well as the elements involved in its modulation. Recently, we demonstrated that abnormal GM2 ganglioside accumulation causes depletion of ER Ca2+ content, which in turn activates PERK (PKR-like-ER kinase), one of the UPR sensors. Furthermore, PERK signaling participates in the neurite atrophy and apoptosis induced by GM2 accumulation. In this respect, we have established an experimental system that allows us to molecularly modulate the expression of downstream PERK components and thus change vulnerability of neurons to undergo neuritic atrophy. We performed knockdown of calcineurin (cytoprotective) and CHOP (pro-apoptotic) expression in rat cortical neuronal cultures. Cells were infected with lentivirus-delivered specific shRNA and then treated with GM2 at different times, fixed and immunostained with anti-MAP2 (microtube-associated protein 2) antibody. Later, cell images were recorded using a fluorescence microscope and total neurite outgrowth was evaluated by using the public domain image processing software ImageJ. The inhibition of expression of those PERK signaling components clearly made it possible to either accelerate or delay the neuritic atrophy induced by ER stress. This approach might be used in cell system models of ER stress to evaluate the vulnerability of neurons to neurite atrophy.


Assuntos
Estresse do Retículo Endoplasmático/genética , Lentivirus/genética , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Feminino , Gravidez , Ratos , Ratos Wistar
4.
Front Cell Neurosci ; 13: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001087

RESUMO

17ß-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase 1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos in vitro, but the mechanism that initiates these events is poorly understood. This study reports the intracellular Ca2+ increase that participates in the activation of ERK1/2 and axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-day-old male rat embryos and fed with astroglia-conditioned media for 48 h. E2-induced ERK phosphorylation was completely abolished by a ryanodine receptor (RyR) inhibitor (ryanodine) and partially attenuated by an L-type voltage-gated Ca2+ channel (L-VGCC) blocker (nifedipine), an inositol-1,4,5-trisphosphate receptor (IP3R) inhibitor (2-APB), and a phospholipase C (PLC) inhibitor (U-73122). We also conducted Ca2+ imaging recording using primary cultured neurons. The results show that E2 rapidly induces an increase in cytosolic Ca2+, which often occurs in repetitive Ca2+ oscillations. This response was not observed in the absence of extracellular Ca2+ or with inhibitory ryanodine and was markedly reduced by nifedipine. E2-induced axonal growth was completely inhibited by ryanodine. In summary, the results suggest that Ca2+ mobilization from extracellular space as well as from the endoplasmic reticulum is necessary for E2-induced ERK1/2 activation and axogenesis. Understanding the mechanisms of brain estrogenic actions might contribute to develop novel estrogen-based therapies for neurodegenerative diseases.

5.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 225-239, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389374

RESUMO

GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear. In vitro experiments, using microsomes from Sandhoff mouse model brain, showed that increase of GM2 content negatively modulates sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Pelled et al., 2003). Furthermore, Ca2+ depletion in endoplasmic reticulum (ER) triggers Unfolded Protein Response (UPR), which tends to restore homeostasis in the ER; however, if cellular damage persists, an apoptotic response is initiated. We found that ER GM2 accumulation in cultured neurons induces luminal Ca2+ depletion, which in turn activates PERK (protein kinase RNA [PKR]-like ER kinase), one of three UPR sensors. PERK signaling displayed biphasic activation; i.e., early upregulation of cytoprotective calcineurin (CN) and, under prolonged ER stress, enhanced expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Moreover, GM2 accumulation in neuronal cells induced neurite atrophy and apoptosis. Both processes were effectively modulated by treatment with the selective PERK inhibitor GSK2606414, by CN knockdown, and by CHOP knockdown. Overall, our findings demonstrate the essential role of PERK signaling pathway contributing to neurodegeneration in a model of GM2-gangliosidosis.


Assuntos
Gangliosidoses GM2/metabolismo , Neuritos/fisiologia , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Atrofia/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M2)/fisiologia , Gangliosidoses GM2/genética , Indóis/farmacologia , Camundongos , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transdução de Sinais/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/fisiologia
6.
Arch Biochem Biophys ; 613: 61-68, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916505

RESUMO

Cyclophilin D (CyPD), a mitochondrial matrix protein, has been widely studied for its role in mitochondrial-mediated cell death. Unexpectedly, we previously discovered that overexpression of CyPD in a stable cell line, increased mitochondrial membrane potentials and enhanced cell survival under conditions of oxidative stress. Here, we investigated the underlying mechanisms responsible for these findings. Spectrophotometric measurements in isolated mitochondria revealed that overexpression of CyPD in HEK293 cells increased respiratory chain activity, but only for Complex III (CIII). Acute treatment of mitochondria with the immumosupressant cyclosporine A did not affect CIII activity. Expression levels of the CIII subunits cytochrome b and Rieske-FeS were elevated in HEK293 cells overexpressing CyPD. However, CIII activity was still significantly higher compared to control mitochondria, even when normalized by protein expression. Blue native gel electrophoresis and Western blot assays revealed a molecular interaction of CyPD with CIII and increased levels of supercomplexes in mitochondrial protein extracts. Radiolabeled protein synthesis in mitochondria showed that CIII assembly and formation of supercomplexes containing CIII were significantly faster when CyPD was overexpressed. Taken together, these data indicate that CyPD regulates mitochondrial metabolism, and likely cell survival, by promoting more efficient electrons flow through the respiratory chain via increased supercomplex formation.


Assuntos
Ciclofilinas/metabolismo , Mitocôndrias/metabolismo , Ciclosporina/química , Transporte de Elétrons , Regulação da Expressão Gênica , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Estresse Oxidativo , Oxigênio/química , Ligação Proteica , Conformação Proteica , Espectrofotometria
7.
Neurobiol Dis ; 94: 139-56, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27334877

RESUMO

The Ca(2+)-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNß expression increased after treatment with a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNß was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNß with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNß resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNß-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNß. Importantly, the cytoprotective function of CNß was PERK-dependent both in vitro and in vivo. Loss of CNß in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNß-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo
8.
Cell Calcium ; 53(4): 286-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23415071

RESUMO

The endoplasmic reticulum (ER) is a Ca(2+) storing organelle that plays a critical role in the synthesis, folding and post-translational modifications of many proteins. The ER enters into a condition of stress when the load of newly synthesized proteins exceeds its folding and processing capacity. This activates a signal transduction pathway called the unfolded protein response (UPR) that attempts to restore homeostasis. The precise role of ER Ca(2+) in the initiation of the UPR has not been defined. Specifically, it has not been established whether ER Ca(2+) dysregulation is a cause or consequence of ER stress. Here, we report that partial depletion of ER Ca(2+) stores induces a significant induction of the UPR, and leads to the retention of a normally secreted protein Carboxypeptidase Y. Moreover, inhibition of protein glycosylation by tunicamycin rapidly induced an ER Ca(2+) leak into the cytosol. However, blockade of the translocon with emetine inhibited the tunicamycin-induced Ca(2+) release. Furthermore, emetine treatment blocked elF2α phosphorylation and reduced expression of the chaperone BiP. These findings suggest that Ca(2+) may be both a cause and a consequence of ER protein misfolding. Thus, it appears that ER Ca(2+) leak is a significant co-factor for the initiation of the UPR.


Assuntos
Cálcio/metabolismo , Catepsina A/metabolismo , Retículo Endoplasmático/metabolismo , Oócitos/metabolismo , Resposta a Proteínas não Dobradas , Animais , Catepsina A/antagonistas & inibidores , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Desdobramento de Proteína , Tunicamicina/farmacologia , Xenopus laevis
9.
Adv Exp Med Biol ; 961: 149-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224877

RESUMO

In squid nerves, MgATP modulation of the Na(+)/Ca(2+) exchanger requires the presence of a cytosolic protein which becomes phosphorylated during the process. This factor has been recently identified. Mass spectroscopy and Western blot analysis established that it is a member of the lipocalin superfamily of lipid-binding proteins (LBP or FABP) of 132 amino acids. We called it regulatory protein of squid nerve sodium/calcium exchanger (ReP1-NCXSQ, access to GenBank EU981897).ReP1-NCXSQ was cloned, expressed, and purified. Circular dichroism, far-UV, and infrared spectroscopy suggest a secondary structure, predominantly of beta-sheets. The tertiary structure prediction provides ten beta-sheets and two alpha-helices, characteristic of most of LPB. Functional experiments showed that, to be active, ReP1-NCXSQ must be phosphorylated by MgATP, through the action of a kinase present in the plasma membrane. Moreover, PO4-ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. An additional crucial observation was that, in proteoliposomes containing only the purified Na(+)/Ca(2+) exchanger, PO4-ReP1-NCXSQ promotes activation; therefore, this upregulation has no other requirement than a lipid membrane and the incorporated exchanger protein.Recently, we solved the crystal structure of ReP1-NCXSQ which was as predicted: a "barrel" consisting of ten beta-sheets and two alpha-helices. Inside the barrel is the fatty acid coordinated by hydrogen bonds with Arg126 and Tyr128. Point mutations showed that neither Tyr20Ala, Arg58Val, Ser99Ala, nor Arg126Val is necessary for protein phosphorylation or activity. On the other hand, Tyr128 is essential for activity but not for phosphorylation. We can conclude that (1) for the first time, a role of an LBP is demonstrated in the metabolic regulation of an ion exchanger; (2) phosphorylation of this LBP can be separated from the activation capacity; and (3) Tyr128, a candidate to coordinate lipid binding inside the barrel, is essential for activity.


Assuntos
Decapodiformes , Proteínas do Tecido Nervoso , Trocador de Sódio e Cálcio , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Clonagem Molecular , Decapodiformes/química , Decapodiformes/genética , Decapodiformes/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/isolamento & purificação , Trocador de Sódio e Cálcio/metabolismo
10.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1098-107, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948910

RESUMO

The protein ReP1-NCXSQ was isolated from the cytosol of squid nerves and has been shown to be required for MgATP stimulation of the squid nerve Na(+)/Ca(2+) exchanger NCXSQ1. In order to determine its mode of action and the corresponding biologically active ligand, sequence analysis, crystal structures and mass-spectrometric studies of this protein and its Tyr128Phe mutant are reported. Sequence analysis suggests that it belongs to the CRABP family in the FABP superfamily. The X-ray structure at 1.28 Å resolution shows the FABP ß-barrel fold, with a fatty acid inside the barrel that makes a relatively short hydrogen bond to Tyr128 and shows a double bond between C9 and C10 but that is disordered beyond C12. Mass-spectrometric studies identified this fatty acid as palmitoleic acid, confirming the double bond between C9 and C10 and establishing a length of 16 C atoms in the aliphatic chain. This acid was caught inside during the culture in Escherichia coli and therefore is not necessarily linked to the biological activity. The Tyr128Phe mutant was unable to activate the Na(+)/Ca(2+) exchanger and the corresponding crystal structure showed that without the hydrogen bond to Tyr128 the palmitoleic acid inside the barrel becomes disordered. Native mass-spectrometric analysis confirmed a lower occupancy of the fatty acid in the Tyr128Phe mutant. The correlation between (i) the lack of activity of the Tyr128Phe mutant, (ii) the lower occupancy/disorder of the bound palmitoleic acid and (iii) the mass-spectrometric studies of ReP1-NCXSQ suggests that the transport of a fatty acid is involved in regulation of the NCXSQ1 exchanger, providing a novel insight into the mechanism of its regulation. In order to identify the biologically active ligand, additional high-resolution mass-spectrometric studies of the ligands bound to ReP1-NCXSQ were performed after incubation with squid nerve vesicles both with and without MgATP. These studies clearly identified palmitic acid as the fatty acid involved in regulation of the Na(+)/Ca(2+) exchanger from squid nerve.


Assuntos
Decapodiformes/química , Trocador de Sódio e Cálcio/química , Animais , Decapodiformes/genética , Modelos Moleculares , Mutação , Filogenia , Estrutura Terciária de Proteína , Trocador de Sódio e Cálcio/genética , Homologia Estrutural de Proteína
11.
Arch Biochem Biophys ; 527(1): 6-15, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22884762

RESUMO

Trypanosoma cruzi undergoes differentiation in the rectum of triatomine, where increased osmolarity is caused mainly by elevated content of NaCl from urine. Early biochemical events in response to high osmolarity in this parasite have not been totally elucidated. In order to clarify the relationship between these events and developmental stages of T. cruzi, epimastigotes were subjected to hyperosmotic stress, which caused activation of Na(+)/H(+) exchanger from acidic vacuoles and accumulation of inositol trisphosphate (InsP(3)). Suppression of InsP(3) levels was observed in presence of intracellular Ca(2+) chelator or pre-treatment with 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), which also inhibited the alkalinization of acidic vacuoles via a Na(+)/H(+) exchanger and the consequent increase in cytosolic calcium. These effects were activated and inhibited by PMA and Chelerythrine respectively, suggesting regulation by protein kinase C. The T. cruzi Na(+)/H(+) exchanger, TcNHE1, has 11 transmembrane domains and is localized in acidic vacuoles of epimastigotes. The analyzed biochemical changes were correlated with morphological changes, including an increase in the size of acidocalcisomes and subsequent differentiation to an intermediate form. Both processes were delayed when TcNHE1 was inhibited by EIPA, suggesting that these early biochemical events allow the parasite to adapt to conditions faced in the rectum of the insect vector.


Assuntos
Doença de Chagas/parasitologia , Proteínas de Protozoários/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Trypanosoma cruzi/citologia , Trypanosoma cruzi/metabolismo , Fosfolipases Tipo C/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Concentração Osmolar , Proteínas de Protozoários/análise , Trocadores de Sódio-Hidrogênio/análise , Trypanosoma cruzi/química
12.
PLoS One ; 5(8): e11925, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700529

RESUMO

BACKGROUND: The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) 2b. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that calcineurin (CN), a Ca2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 alpha (eIF2-alpha) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [35S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aalpha in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-alpha. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca2+ increased. These data were obtained from [gamma32P]-CLNX immunoprecipitations and Ca2+ imaging measurements. CLNX was dephosphorylated when Xenopus oocytes were treated with ER stressors. Dephosphorylation was pharmacologically blocked by treatment with CN inhibitors. Finally, evidence is presented that PERK phosphorylates CN-A at low resting levels of Ca2+. We further show that phosphorylated CN-A exhibits decreased phosphatase activity, consistent with this regulatory mechanism being shut down as ER homeostasis is re-established. CONCLUSIONS/SIGNIFICANCE: Our data suggest two new complementary roles for CN in the regulation of the early UPR. First, CN binding to PERK enhances inhibition of protein translation to allow the cell time to recover. The induction of the early UPR, as indicated by increased P-elF2alpha, is critically dependent on a translational increase in CN-Aalpha. Second, CN dephosphorylates CLNX and likely removes inhibition of SERCA2b activity, which would aid the rapid restoration of ER Ca2+ homeostasis.


Assuntos
Anuros , Calcineurina/metabolismo , Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Estresse Fisiológico , eIF-2 Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/metabolismo , Calcineurina/deficiência , Calcineurina/genética , Cálcio/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Oócitos/metabolismo , Fosforilação , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Ratos , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo , Tunicamicina/farmacologia , Xenopus
13.
Cell Calcium ; 45(5): 499-508, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19386360

RESUMO

This work shows, for the first time, a properly metabolically regulated squid nerve Na(+)/Ca(2+) exchanger (NCXSQ1) heterologous expressed in Saccharomyces cerevisiae. The exchanger was fused to the enhanced green fluorescence protein (eGFP) on its C-terminus and had two tags, a Strep-tag II and 6 histidines, added to the N-terminal region (ST-6HB-NCXSQ1-eGFP). The eGFP fluorescence signal co-localized with that of the plasma membrane marker FM1-43 in whole cells that displayed an uptake of Ca(2+) with the expected characteristics of the reverse Na(+)/Ca(2+) exchange mode. Similar to squid nerve membrane vesicles, inside-out yeast plasma membrane vesicles (ISOV) showed a Ca(2+)(i) regulation of the forward mode that was modulated by previously phosphorylated regulatory cytosolic protein (ReP1-NCXSQ). On the other hand, a close association between NCXSQ1 and ReP1-NCXSQ, estimated by co-immunoprecipitation, was independent of ReP1-NCXSQ phosphorylation. An additional crucial observation was that in proteoliposomes containing only the ST-6HB-NCXSQ1-eGFP protein, Na(+)/Ca(2+) exchange was stimulated by phosphorylated ReP1-NCXSQ; i.e., this up-regulation needs no other requirement besides the lipid membrane and the exchanger protein. Finally, this work provides a potential approach to obtain enough purified NCXSQ1 for structural and biochemical studies which have been delayed due to the lack of sufficient material.


Assuntos
Decapodiformes/metabolismo , Saccharomyces cerevisiae , Trocador de Sódio e Cálcio/metabolismo , Animais , Membrana Celular/metabolismo , Lipossomos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trocador de Sódio e Cálcio/genética , Regulação para Cima
14.
Biochim Biophys Acta ; 1788(6): 1255-62, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19168028

RESUMO

Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na(+)/Ca(2+) exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, over expressed and purified. Far-UV circular dichroism and infrared spectra suggest a majority of beta-strand in the secondary structure. Moreover, the predicted tertiary structure indicates ten beta-sheets and two short alpha-helices characteristic of most lipid binding proteins. Functional experiments showed that in order to be active ReP1-NCXSQ must become phosphorylated in the presence of MgATP by a kinase that is Staurosporin insensitive. Even more, the phosphorylated ReP1-NCXSQ is able to stimulate the exchanger in the absence of ATP. In addition to the identification of a new member of the lipid binding protein family, this work shows, for the first time, the requirement of a lipid binding protein for metabolic regulation of an ion transporting system.


Assuntos
Trifosfato de Adenosina/farmacologia , Decapodiformes/fisiologia , Gânglios/fisiologia , Neurônios/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Regiões 5' não Traduzidas/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Cinética , Dados de Sequência Molecular , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética , Espectrofotometria Infravermelho , Raios Ultravioleta
15.
FEBS Lett ; 580(11): 2686-90, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16643905

RESUMO

We studied the effect of Na(+) extracellular on Ca(2+) mobilization from intracellular store evoked by carbachol in Trypanosoma cruzi. We report that slow component of Ca(2+) signaling evoked by agonist is dependent on extracellular Na(+) but not on InsP(3) increase. Moreover, this Ca(2+) signaling progressively increased when pH of the medium changed from 7.0 to 7.8. In addition, we found that it was regulated by PKC. The agonist was also able to induce the alkalinization of the acidic compartment, and both Ca(2+) signaling and alkalinization were inhibited by the EIPA-inhibitor of the Na(+)/H(+) exchanger. These results demonstrated the alkalinization of acidic vacuoles and PKC are involved in the triggering of the epimastigote Ca(2+) signaling.


Assuntos
Sinalização do Cálcio , Trocador de Sódio e Cálcio/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Acetato de Tetradecanoilforbol/farmacologia
16.
Biochem Biophys Res Commun ; 293(1): 314-20, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-12054601

RESUMO

The synthetic peptide carrying residues 1-40 of chicken alpha(D)-globin, which promotes differentiation in Trypanosoma cruzi epimastigote, stimulated PPtdIns-k, DAG-k, and PA-k activities in a dose-dependent manner. A biphasic behavior only for PPtdIns-k and DAG-k was demonstrated by changes in [(32)P]PPtdIns and PtdOH levels, the earlier phase peaking at 3 min with a return to basal levels by 6 min and then a second phase with a sustained increase in time. This behavior was not observed for PA-k; the DGPP levels peaked at 6 min and were sustained in time. PMA pretreatment only abolished the first peak of PPtdIns-k, DAG-k activities, and InsPs/InsP(3) levels. There was also a transient elevation in intracellular calcium concentration, but this variation was modified only 50% by PMA. The results suggest that peptide 1-40 induces activation of the inositol cycle through lipid kinase activation in a biphasic manner. In this response, the early increase of enzymatic activities would be regulated by PKC and the InsP(3) may only be responsible, in part, for the calcium signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Diacilglicerol Quinase/metabolismo , Peptídeos/farmacologia , Trypanosoma cruzi/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Galinhas , Globinas/química , Globinas/farmacologia , Fosfatos de Inositol/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
17.
Mol Biochem Parasitol ; 120(1): 83-91, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11849708

RESUMO

Stimulation of epimastigote forms of Trypanosma cruzi with carbachol resulted in a long-lasting response. The earlier phase for inositol phosphates was rapid and transient, peaking at 1 min with a return to basal levels by 6 min. In a second phase, these metabolite levels reached maximal values at 10-12 min, with a later declination to basal values at about 20 min. The inositol phosphate response was quenched by parasite treatment with atropine. The elevation in intracellular free calcium ([Ca(2+)]i) was transient, reaching the resting level at 87+/-8 s (n=48) of agonist addition. Myo-inositol 1,4,5-triphosphate (InsP(3)) production and [Ca(2+)]i mobilisation were carbachol dose-dependent. The maximally effective concentrations of agonist ranged between 1x10(-6) and 1x10(-5) M. The increase in carbachol concentration resulted in an evident attenuation of [Ca(2+)]i mobilisation and in [3H]InsP(3) levels. Pretreatment of the cells with 10 microM U73122, a phospholipase C (PLC) inhibitor, showed that both InsP(3) peaks triggered by carbachol were completely abolished, whereas there was not substantial change on the maximum elevation in [Ca(2+)]i. The first peak of InsP(3) and InsP(s) was completely abolished when the cells were incubated with phorbol 12-myristate 13-acetate ester (TPA) for 30 min before carbachol stimulation. A biphasic behaviour for PtdIns 4-kinase activity was demonstrated by changes in [32P]PtdInsP levels. The time-course of PtdIns4P 5-kinase activity showed a rapid, significant and transient decrease of [32P]PtdInsP(2) from 0 time to the third min. At the end of this time the polyphosphoinositide began to return towards control levels but, interestingly, after 5-6 min of stimulation there was a subsequent more important increase over control levels which peaked at 10 min. There was also a detectable increment of DAG at 1 min with a maximum at 3 min, this level remaining elevated until at least 10 min. Subsequently, these levels returned to the base line or even below it.


Assuntos
Sinalização do Cálcio , Carbacol/farmacologia , Fosfatos de Inositol/metabolismo , Trypanosoma cruzi/metabolismo , 1-Fosfatidilinositol 4-Quinase , Animais , Cálcio/metabolismo , Diacilglicerol Quinase/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...