Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850162

RESUMO

MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs). In this study, we demonstrate the critical role of the miRNA/miRNA* duplex region in the processing of miRNA precursors. We observed that endogenous MIRNAs frequently experience suboptimal processing in vivo due to mismatches in the miRNA/miRNA* duplex, a key region that fine-tunes miRNA levels. Enhancing the interaction energy of the miRNA/miRNA* duplex in two-step MIRNAs results in a substantial increase in miRNA levels. Conversely, sequential MIRNAs display distinct and specific requirements for the miRNA/miRNA* duplexes along their foldback structure. Our work establishes a connection between the miRNA/miRNA* structure and precursor processing mechanisms. Furthermore, we reveal a link between the biological function of miRNAs and the processing mechanism of their precursors with the evolution of plant miRNA/miRNA* duplex structures.

2.
Nucleic Acids Res ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769059

RESUMO

Plant ARGONAUTE (AGO) proteins play pivotal roles regulating gene expression through small RNA (sRNA) -guided mechanisms. Among the 10 AGO proteins in Arabidopsis thaliana, AGO1 stands out as the main effector of post-transcriptional gene silencing. Intriguingly, a specific region of AGO1, its N-terminal extension (NTE), has garnered attention in recent studies due to its involvement in diverse regulatory functions, including subcellular localization, sRNA loading and interactions with regulatory factors. In the field of post-translational modifications (PTMs), little is known about arginine methylation in Arabidopsis AGOs. In this study, we show that NTE of AGO1 (NTEAGO1) undergoes symmetric arginine dimethylation at specific residues. Moreover, NTEAGO1 interacts with the methyltransferase PRMT5, which catalyzes its methylation. Notably, we observed that the lack of symmetric dimethylarginine has no discernible impact on AGO1's subcellular localization or miRNA loading capabilities. However, the absence of PRMT5 significantly alters the loading of a subgroup of sRNAs into AGO1 and reshapes the NTEAGO1 interactome. Importantly, our research shows that symmetric arginine dimethylation of NTEs is a common process among Arabidopsis AGOs, with AGO1, AGO2, AGO3 and AGO5 undergoing this PTM. Overall, this work deepens our understanding of PTMs in the intricate landscape of RNA-associated gene regulation.

3.
EMBO J ; 42(20): e114400, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37735935

RESUMO

Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.


Assuntos
RNA Longo não Codificante , Transcriptoma , RNA Longo não Codificante/genética , Regulação da Expressão Gênica de Plantas , RNA não Traduzido/genética , Estresse Fisiológico/genética , RNA de Plantas/genética
4.
J Exp Bot ; 74(13): 3806-3820, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-36861321

RESUMO

Gene targeting can be used to make modifications at a specific region in a plant's genome and create high-precision tools for plant biotechnology and breeding. However, its low efficiency is a major barrier to its use in plants. The discovery of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-based site-specific nucleases capable of inducing double-strand breaks in desired loci resulted in the development of novel approaches for plant gene targeting. Several studies have recently demonstrated improvements in gene targeting efficiency through cell-type-specific expression of Cas nucleases, the use of self-amplified gene-targeting-vector DNA, or manipulation of RNA silencing and DNA repair pathways. In this review, we summarize recent advances in CRISPR/Cas-mediated gene targeting in plants and discuss potential efficiency improvements. Increasing the efficiency of gene targeting technology will help pave the way for increased crop yields and food safety in environmentally friendly agriculture.


Assuntos
Sistemas CRISPR-Cas , Genoma de Planta , Melhoramento Vegetal/métodos , Marcação de Genes/métodos , Plantas/genética , Endonucleases/genética
5.
J Exp Bot ; 74(7): 2374-2388, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722331

RESUMO

ARGONAUTE (AGO) proteins are the final effectors of small RNA-mediated transcriptional and post-transcriptional silencing pathways. Plant AGO proteins are essential for preserving genome integrity, regulating developmental processes, and in stress responses and pathogen defense. Since the discovery of the first eukaryotic AGO in Arabidopsis, our understanding of these proteins has grown exponentially throughout all the eukaryotes. However, many aspects of AGO proteins' modes of action and how they are influenced by their subcellular localization are still to be elucidated. Here, we provide an updated and comprehensive view of the evolution, domain architecture and roles, expression pattern, subcellular localization, and biological functions of the 10 AGO proteins in Arabidopsis.


Assuntos
Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , MicroRNAs/metabolismo , Interferência de RNA
6.
STAR Protoc ; 2(1): 100320, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659901

RESUMO

The nature of plant tissues has continuously hampered understanding of the spatio-temporal and subcellular distribution of RNA-guided processes. Here, we describe a universal protocol based on Arabidopsis to investigate subcellular RNA distribution from virtually any plant species using flow cytometry sorting. This protocol includes all necessary control steps to assess the quality of the nuclear RNA purification. Moreover, it can be easily applied to different plant developmental stages, tissues, cell cycle phases, experimental growth conditions, and specific cell type(s). For complete information on the use and execution of this protocol, please refer to Bologna et al. (2018) and de Leone et al. (2020).


Assuntos
Citometria de Fluxo/métodos , RNA Nuclear/isolamento & purificação , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/fisiologia , Plantas/genética , Plantas/metabolismo , RNA/isolamento & purificação , RNA/metabolismo
7.
Nat Commun ; 11(1): 5320, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087730

RESUMO

MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Pareamento Incorreto de Bases , Proteínas de Ciclo Celular/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Processamento Pós-Transcricional do RNA , RNA de Plantas/química , Ribonuclease III/metabolismo
8.
Curr Biol ; 30(9): 1740-1747.e6, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220315

RESUMO

The circadian clock modulates immune responses in plants and animals; however, it is unclear how host-pathogen interactions affect the clock. Here we analyzed clock function in Arabidopsis thaliana mutants with defective immune responses and found that enhanced disease susceptibility 4 (eds4) displays alterations in several circadian rhythms. Mapping by sequencing revealed that EDS4 encodes the ortholog of NUCLEOPORIN 205, a core component of the inner ring of the nuclear pore complex (NPC). Consistent with the idea that the NPC specifically modulates clock function, we found a strong enrichment in core clock genes, as well as an increased nuclear to total mRNA accumulation, among genes that were differentially expressed in eds4 mutants. Interestingly, infection with Pseudomonas syringae in wild-type (WT) plants downregulated the expression of several morning core clock genes as early as 1 h post-infection, including all members of the NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) gene family, and this effect was attenuated in eds4. Furthermore, lnk mutants were more susceptible than the WT to P. syringae infection. These results indicate that bacterial infection, acting in part through the NPC, alters core clock gene expression and/or mRNA accumulation in a way that favors bacterial growth and disease susceptibility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Animais , Proteínas de Arabidopsis/genética , Proteínas CLOCK/genética , Mutação , Doenças das Plantas/imunologia
9.
Mol Plant ; 11(8): 1008-1023, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29803952

RESUMO

In eukaryotes, the RNase-III Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant pre-miR168 orthologs, which enables flexible internal base-pairing underlying at least three metastable structural configurations. These configurations promote alternative, accurate Dicer cleavage events generating length and structural isomiR168 variants with distinctive AGO sorting properties and modes of action. Among these isomiR168s, a duplex with a 22-nt guide strand exhibits strikingly preferential affinity for AGO10, the closest AGO1 paralog. The 22-nt miR168-AGO10 complex antagonizes AGO1 accumulation in part via "transitive RNAi", a silencing-amplification process, to maintain appropriate AGO1 cellular homeostasis. Furthermore, we found that the tombusviral P19 silencing-suppressor protein displays markedly weaker affinity for the 22-nt form among its isomiR168 cargoes, thereby promoting AGO10-directed suppression of AGO1-mediated antiviral silencing. Taken together, these findings indicate that structural flexibility, a previously overlooked property of pre-miRNAs, considerably increases the versatility and regulatory potential of individual MIRNA genes, and that some pathogens might have evolved the capacity or mechanisms to usurp this property.


Assuntos
Inativação Gênica/fisiologia , MicroRNAs/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Tombusvirus/genética
10.
Mol Cell ; 69(4): 709-719.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398448

RESUMO

Unlike in metazoans, plant microRNAs (miRNAs) undergo stepwise nuclear maturation before engaging cytosolic, sequence-complementary transcripts in association with the silencing effector protein ARGONAUTE1 (AGO1). Since their discovery, how and under which form plant miRNAs translocate to the cytosol has remained unclear, as has their sub-cellular AGO1 loading site(s). Here, we show that the N termini of all plant AGO1s contain a nuclear-localization (NLS) and nuclear-export signal (NES) that, in Arabidopsis thaliana (At), enables AtAGO1 nucleo-cytosolic shuttling in a Leptomycin-B-inhibited manner, diagnostic of CRM1(EXPO1)/NES-dependent nuclear export. Nuclear-only AtAGO1 contains the same 2'O-methylated miRNA cohorts as its nucleo-cytosolic counterpart, but it preferentially interacts with the miRNA loading chaperone HSP90. Furthermore, mature miRNA translocation and miRNA-mediated silencing both require AtAGO1 nucleo-cytosolic shuttling. These findings lead us to propose a substantially revised view of the plant miRNA pathway in which miRNAs are matured, methylated, loaded into AGO1 in the nucleus, and exported to the cytosol as AGO1:miRNA complexes in a CRM1(EXPO1)/NES-dependent manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Modelos Moleculares , Transporte Proteico , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Núcleo Celular/genética , Citosol/metabolismo , Frações Subcelulares
11.
Plant Cell ; 28(11): 2786-2804, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27956586

RESUMO

Plant RNA silencing operates via RNA-directed DNA-methylation (RdDM) to repress transcription or by targeting mRNAs via posttranscriptional gene silencing (PTGS). These pathways rely on distinct Dicer-like (DCL) proteins that process double-stranded RNA (dsRNA) into small-interfering RNAs (siRNAs). Here, we explored the expression and subcellular localization of Arabidopsis thaliana DCL4. DCL4 expression predominates as a transcription start site isoform encoding a cytoplasmic protein, which also represents the ancestral form in plants. A longer DCL4 transcript isoform encoding a nuclear localization signal, DCL4NLS, is present in Arabidopsis, but DNA methylation normally suppresses its expression. Hypomethylation caused by mutation, developmental reprogramming, and biotic stress correlates with enhanced DCL4NLS expression, while hypermethylation of a DCL4 transgene causes a reduction in DCL4NLS expression. DCL4NLS functions in a noncanonical siRNA pathway, producing a unique set of 21-nucleotide-long "disiRNAs," for DCL4NLS isoform-dependent siRNAs, through the nuclear RdDM dsRNA synthesis pathway. disiRNAs originate mostly from transposable elements (TEs) and TE-overlapping/proximal genes, load into the PTGS effector ARGONAUTE1 (AGO1), and display a subtle effect on transcript accumulation together with overlapping 24-nucleotide siRNAs. We propose that, via PTGS, disiRNAs could help to tighten the expression of epigenetically activated TEs and genes using the methylation-state-responsive DCL4NLS.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Isoformas de Proteínas/metabolismo , Ribonuclease III/genética , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
12.
PLoS One ; 9(11): e113243, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409478

RESUMO

MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Dicroísmo Circular , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
13.
Methods ; 67(1): 36-44, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24731939

RESUMO

MicroRNAs (miRNAs) are small RNAs that derive from endogenous precursors harboring foldback structures. Plant miRNA precursors are quite variable in their size and shape. Still, the miRNA processing machinery, consisting of DICER-LIKE1 (DCL1) and accessory proteins recognize structural features on the precursors to cleave them at specific places releasing the mature miRNAs. The identification of miRNA processing intermediates in plants has mostly relied on a modified 5' RACE method, designed to detect the 5' end of uncapped RNAs. However, this method is time consuming and is, therefore, only practical for the analysis of a handful miRNAs. Here, we present a modification of this approach in order to perform genome-wide analysis of miRNA processing intermediates. Briefly, a reverse transcription is performed with a mixture of specific primers designed against all known miRNA precursors. miRNA processing intermediates are then specifically amplified to generate a library and subjected to deep sequencing. This method, called SPARE (Specific Parallel Amplification of 5' RNA Ends) allows the identification of processing intermediates for most of the Arabidopsis miRNAs. The results enable the determination of the DCL1 processing direction and the cleavage sites introduced by miRNA processing machinery in the precursors. The SPARE method can be easily adapted to detect miRNA-processing intermediates in other systems.

14.
Annu Rev Plant Biol ; 65: 473-503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24579988

RESUMO

In eukaryotic RNA silencing, RNase-III classes of enzymes in the Dicer family process double-stranded RNA of cellular or exogenous origin into small-RNA (sRNA) molecules. sRNAs are then loaded into effector proteins known as ARGONAUTEs (AGOs), which, as part of RNA-induced silencing complexes, target complementary RNA or DNA for silencing. Plants have evolved a large variety of pathways over the Dicer-AGO consortium, which most likely underpins part of their phenotypic plasticity. Dicer-like proteins produce all known classes of plant silencing sRNAs, which are invariably stabilized via 2'-O-methylation mediated by HUA ENHANCER 1 (HEN1), potentially amplified by the action of several RNA-dependent RNA polymerases, and function through a variety of AGO proteins. Here, we review the known characteristics and biochemical properties of the core silencing factors found in the model plant Arabidopsis thaliana. We also describe how interactions between these core factors and more specialized proteins allow the production of a plethora of silencing sRNAs involved in a large array of biological functions. We emphasize in particular the biogenesis and activities of silencing sRNAs of endogenous origin.


Assuntos
Arabidopsis/genética , Interferência de RNA , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Variação Genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
15.
Methods ; 64(3): 283-91, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24018204

RESUMO

MicroRNAs (miRNAs) are small RNAs that derive from endogenous precursors harboring foldback structures. Plant miRNA precursors are quite variable in their size and shape. Still, the miRNA processing machinery, consisting of DICER-LIKE1 (DCL1) and accessory proteins recognize structural features on the precursors to cleave them at specific places releasing the mature miRNAs. The identification of miRNA processing intermediates in plants has mostly relied on a modified 5' RACE method, designed to detect the 5' end of uncapped RNAs. However, this method is time consuming and is, therefore, only practical for the analysis of a handful miRNAs. Here, we present a modification of this approach in order to perform genome-wide analysis of miRNA processing intermediates. Briefly, a reverse transcription is performed with a mixture of specific primers designed against all known miRNA precursors. miRNA processing intermediates are then specifically amplified to generate a library and subjected to deep sequencing. This method, called SPARE (Specific Parallel Amplification of 5' RNA Ends) allows the identification of processing intermediates for most of the Arabidopsis miRNAs. The results enable the determination of the DCL1 processing direction and the cleavage sites introduced by miRNA processing machinery in the precursors. The SPARE method can be easily adapted to detect miRNA-processing intermediates in other systems.


Assuntos
MicroRNAs/genética , RNA de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA/genética , Biblioteca Gênica , MicroRNAs/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA de Plantas/metabolismo , Análise de Sequência de RNA
16.
Genome Res ; 23(10): 1675-89, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23990609

RESUMO

MicroRNAs (miRNAs) derive from longer precursors with fold-back structures. While animal miRNA precursors have homogenous structures, plant precursors comprise a collection of fold-backs with variable size and shape. Here, we design an approach to systematically analyze miRNA processing intermediates and characterize the biogenesis of most of the evolutionarily conserved miRNAs present in Arabidopsis thaliana. We found that plant miRNAs are processed by four mechanisms, depending on the sequential direction of the processing machinery and the number of cuts required to release the miRNA. Classification of the precursors according to their processing mechanism revealed specific structural determinants for each group. We found that the complexity of the miRNA processing pathways occurs in both ancient and evolutionarily young sequences and that members of the same family can be processed in different ways. We observed that different structural determinants compete for the processing machinery and that alternative miRNAs can be generated from a single precursor. The results provide an explanation for the structural diversity of miRNA precursors in plants and new insights toward the understanding of the biogenesis of small RNAs.


Assuntos
Arabidopsis/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Sequência de Bases , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Conformação de Ácido Nucleico , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Plantas/química , RNA de Plantas/genética
17.
Brief Funct Genomics ; 12(1): 37-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23148323

RESUMO

MicroRNAs are endogenous small RNAs known to be key regulators of gene expression in animals and plants. They are defined by their specific biogenesis which involves the precise excision from an imperfect fold-back precursor. These precursors contain structural determinants required for their correct processing. Still, there are significant differences in the biogenesis and activities of plant and animal microRNAs. This review summarizes diverse aspects of precursor processing in plants, contrasting them to their animal counterparts.


Assuntos
MicroRNAs/genética , Plantas/genética , Processamento Pós-Transcricional do RNA/genética , Animais , MicroRNAs/biossíntese , Modelos Biológicos
18.
Biochemistry ; 51(51): 10159-66, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23194006

RESUMO

Dicer-like ribonuclease III enzymes are involved in different paths related to RNA silencing in plants. Little is known about the structural aspects of these processes. Here we present a structural characterization of the second double-stranded RNA binding domain (dsRBD) of DCL1, which is presumed to participate in pri-micro-RNA recognition and subcellular localization of this protein. We determined the solution structure and found that it has a canonical fold but bears some variation with respect to other homologous domains. We also found that this domain binds both double-stranded RNA and double-stranded DNA, in contrast to most dsRBDs. Our characterization shows that this domain likely has functions other than substrate recognition and binding.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/química , DNA/metabolismo , MicroRNAs/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
19.
Nucleic Acids Res ; 40(18): 8893-904, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22772987

RESUMO

MicroRNAs (miRNAs) are major regulators of gene expression in multicellular organisms. They recognize their targets by sequence complementarity and guide them to cleavage or translational arrest. It is generally accepted that plant miRNAs have extensive complementarity to their targets and their prediction usually relies on the use of empirical parameters deduced from known miRNA-target interactions. Here, we developed a strategy to identify miRNA targets which is mainly based on the conservation of the potential regulation in different species. We applied the approach to expressed sequence tags datasets from angiosperms. Using this strategy, we predicted many new interactions and experimentally validated previously unknown miRNA targets in Arabidopsis thaliana. Newly identified targets that are broadly conserved include auxin regulators, transcription factors and transporters. Some of them might participate in the same pathways as the targets known before, suggesting that some miRNAs might control different aspects of a biological process. Furthermore, this approach can be used to identify targets present in a specific group of species, and, as a proof of principle, we analyzed Solanaceae-specific targets. The presented strategy can be used alone or in combination with other approaches to find miRNA targets in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/química , RNA de Plantas/química , Arabidopsis/genética , Sequência de Bases , Sequência Conservada , Etiquetas de Sequências Expressas , MicroRNAs/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Alinhamento de Sequência , Solanaceae
20.
Biochemistry ; 49(38): 8237-9, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20735118

RESUMO

HYL1 is a double-stranded RNA binding protein involved in microRNA processing in plants. HYL1 enhances the efficiency and precision of the RNase III protein DCL1 and participates in microRNA strand selection. In this work, we dissect the contributions of the domains of HYL1 to the binding of RNA targets. We found that the first domain is the main contributor to RNA binding. Mapping of the interaction regions by nuclear magnetic resonance on the structure of HYL1 RNA-binding domains showed that the difference in binding capabilities can be traced to sequence divergence in ß2-ß3 loop. The possible role of each domain is discussed in light of previous experimental data.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sequência de Bases , Proteínas de Ciclo Celular , MicroRNAs/genética , Estrutura Terciária de Proteína , RNA/genética , RNA/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...