Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370750

RESUMO

The adoption of agriculture, first documented ~12,000 years ago in the Fertile Crescent, triggered a rapid shift toward starch-rich diets in human populations. Amylase genes facilitate starch digestion and increased salivary amylase copy number has been observed in some modern human populations with high starch intake, though evidence of recent selection is lacking. Here, using 52 long-read diploid assemblies and short read data from ~5,600 contemporary and ancient humans, we resolve the diversity, evolutionary history, and selective impact of structural variation at the amylase locus. We find that both salivary and pancreatic amylase genes have higher copy numbers in populations with agricultural subsistence compared to fishing, hunting, and pastoral groups. We identify 28 distinct amylase structural architectures and demonstrate that identical structures have arisen independently multiple times throughout recent human history. Using a pangenome graph-based approach to infer structural haplotypes across thousands of humans, we identify extensively duplicated haplotypes present at higher frequencies in modern agricultural populations. Leveraging 534 ancient human genomes we find that duplication-containing haplotypes have increased in frequency more than seven-fold over the last 12,000 years providing evidence for recent selection in Eurasians at this locus comparable in magnitude to that at lactase. Together, our study highlights the strong impact of the agricultural revolution on human genomes and the importance of long-read sequencing in identifying signatures of selection at structurally complex loci.

2.
Sci Rep ; 13(1): 20817, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012350

RESUMO

Long-read sequencing allows analyses of single nucleic-acid molecules and produces sequences in the order of tens to hundreds kilobases. Its application to whole-genome analyses allows identification of complex genomic structural-variants (SVs) with unprecedented resolution. SV identification, however, requires complex computational methods, based on either read-depth or intra- and inter-alignment signatures approaches, which are limited by size or type of SVs. Moreover, most currently available tools only detect germline variants, thus requiring separate computation of sample pairs for comparative analyses. To overcome these limits, we developed a novel tool (Germline And SOmatic structuraL varIants detectioN and gEnotyping; GASOLINE) that groups SV signatures using a sophisticated clustering procedure based on a modified reciprocal overlap criterion, and is designed to identify germline SVs, from single samples, and somatic SVs from paired test and control samples. GASOLINE is a collection of Perl, R and Fortran codes, it analyzes aligned data in BAM format and produces VCF files with statistically significant somatic SVs. Germline or somatic analysis of 30[Formula: see text] sequencing coverage experiments requires 4-5 h with 20 threads. GASOLINE outperformed currently available methods in the detection of both germline and somatic SVs in synthetic and real long-reads datasets. Notably, when applied on a pair of metastatic melanoma and matched-normal sample, GASOLINE identified five genuine somatic SVs that were missed using five different sequencing technologies and state-of-the art SV calling approaches. Thus, GASOLINE identifies germline and somatic SVs with unprecedented accuracy and resolution, outperforming currently available state-of-the-art WGS long-reads computational methods.


Assuntos
Gasolina , Software , Humanos , Análise de Sequência , Genoma , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Humano , Análise de Sequência de DNA/métodos
4.
Commun Biol ; 6(1): 382, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031307

RESUMO

Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after chemotherapy. Long read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution, and showed that the relapse methylome is characterized by hypermethylation at both CpG islands and sparse CpGs regions. Most differentially methylated genes, however, were not differentially expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory networks including 50% of all differentially expressed genes in the relapsed AMLs and highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs were poorly conserved in the relapsed AMLs, under-represented at their genomic positions and showed higher methylation entropy, as compared to CpG islands. Analyses of available datasets confirmed TF binding to their target genes and conservation of the same gene-regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations at sparse CpGs of a few transcription factors, which then induce reprogramming of the relapsing phenotype, independently of clonal genomic evolution.


Assuntos
Ilhas de CpG , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Epigenoma , Leucemia Mieloide Aguda , Nanoporos , Humanos , Ilhas de CpG/genética , Ilhas de CpG/fisiologia , DNA/genética , DNA/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Epigenoma/genética , Epigenoma/fisiologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
J Mol Diagn ; 24(7): 711-718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526834

RESUMO

Copy number variants (CNVs) play important roles in the pathogenesis of several genetic syndromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experimental protocols protract diagnostic times from 3 to 15 days. Nanopore sequencing has the ability to reduce time to results for the detection of CNVs with the same resolution of current state-of-the-art diagnostic tests. Nanopore sequencing was compared to molecular karyotyping for the detection of pathogenic CNVs of seven patients with previously diagnosed causative CNVs of different sizes and cellular fractions. Larger chromosomal anomalies included trisomy 21 and mosaic tetrasomy 12p. Among smaller CNVs, two genomic imbalances of 1.3 Mb, a small deletion of 170 kb, and two mosaic deletions (1.2 Mb and 408 kb) were tested. DNA was sequenced and data generated during runs were analyzed in online mode. All pathogenic CNVs were identified with detection time inversely proportional to size and cellular fraction. Aneuploidies were called after only 30 minutes of sequencing, whereas 30 hours were needed to call small CNVs. These results demonstrate the clinical utility of our approach that allows the molecular diagnosis of genomic disorders within a 30-minute to 30-hour time frame and its easy implementation as a routinary diagnostic tool.


Assuntos
Transtornos Cromossômicos , Aneuploidia , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Variações do Número de Cópias de DNA/genética , Humanos , Cariotipagem
6.
Front Genet ; 12: 761791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868242

RESUMO

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data. In this brief research report, we evaluate and compare the performances of five long-read SV callers across four long-read aligners using both real and synthetic nanopore datasets. In particular, we focus on the effects of read alignment, sequencing coverage, and variant allele depth on the detection and genotyping of SVs of different types and size ranges and provide insights into precision and recall of SV callsets generated by integrating the various long-read aligners and SV callers. The computational pipeline we propose is publicly available at https://github.com/davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore sequencing datasets.

7.
Biomark Res ; 9(1): 83, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772467

RESUMO

Eosinophilia represents a group of diseases with heterogeneous pathobiology and clinical phenotypes. Among the alterations found in primary Eosinophilia, gene fusions involving PDGFRα, PDGFRß, FGFR1 or JAK2 represent the biomarkers of WHO-defined "myeloid and lymphoid neoplasms with eosinophilia". The heterogeneous nature of genomic aberrations and the promiscuity of fusion partners, may limit the diagnostic accuracy of current cytogenetics approaches. To address such technical challenges, we exploited a nanopore-based sequencing assay to screen patients with primary Eosinophilia. The comprehensive sequencing approach described here enables the identification of genomic fusion in 60 h, starting from DNA purified from whole blood.

8.
Cell Mol Life Sci ; 78(23): 7795-7812, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714361

RESUMO

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.


Assuntos
Apoptose , Dano ao DNA , Regulação da Expressão Gênica , Epitélio Pigmentado da Retina/efeitos dos fármacos , Voo Espacial/métodos , Ubiquinona/análogos & derivados , Ausência de Peso , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ubiquinona/farmacologia
9.
Gigascience ; 9(10)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33034633

RESUMO

BACKGROUND: Tandem repeat sequences are widespread in the human genome, and their expansions cause multiple repeat-mediated disorders. Genome-wide discovery approaches are needed to fully elucidate their roles in health and disease, but resolving tandem repeat variation accurately remains a challenging task. While traditional mapping-based approaches using short-read data have severe limitations in the size and type of tandem repeats they can resolve, recent third-generation sequencing technologies exhibit substantially higher sequencing error rates, which complicates repeat resolution. RESULTS: We developed TRiCoLOR, a freely available tool for tandem repeat profiling using error-prone long reads from third-generation sequencing technologies. The method can identify repetitive regions in sequencing data without a prior knowledge of their motifs or locations and resolve repeat multiplicity and period size in a haplotype-specific manner. The tool includes methods to interactively visualize the identified repeats and to trace their Mendelian consistency in pedigrees. CONCLUSIONS: TRiCoLOR demonstrates excellent performance and improved sensitivity and specificity compared with alternative tools on synthetic data. For real human whole-genome sequencing data, TRiCoLOR achieves high validation rates, suggesting its suitability to identify tandem repeat variation in personal genomes.


Assuntos
Genoma Humano , Sequências de Repetição em Tandem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sensibilidade e Especificidade , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
10.
Bioinformatics ; 36(4): 1267-1269, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31589307

RESUMO

SUMMARY: VISOR is a tool for haplotype-specific simulations of simple and complex structural variants (SVs). The method is applicable to haploid, diploid or higher ploidy simulations for bulk or single-cell sequencing data. SVs are implanted into FASTA haplotypes at single-basepair resolution, optionally with nearby single-nucleotide variants. Short or long reads are drawn at random from these haplotypes using standard error profiles. Double- or single-stranded data can be simulated and VISOR supports the generation of haplotype-tagged BAM files. The tool further includes methods to interactively visualize simulated variants in single-stranded data. The versatility of VISOR is unmet by comparable tools and it lays the foundation to simulate haplotype-resolved cancer heterogeneity data in bulk or at single-cell resolution. AVAILABILITY AND IMPLEMENTATION: VISOR is implemented in python 3.6, open-source and freely available at https://github.com/davidebolo1993/VISOR. Documentation is available at https://davidebolo1993.github.io/visordoc/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Diploide , Haplótipos , Análise de Sequência de DNA
11.
Nat Biotechnol ; 38(3): 343-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873213

RESUMO

Structural variation (SV), involving deletions, duplications, inversions and translocations of DNA segments, is a major source of genetic variability in somatic cells and can dysregulate cancer-related pathways. However, discovering somatic SVs in single cells has been challenging, with copy-number-neutral and complex variants typically escaping detection. Here we describe single-cell tri-channel processing (scTRIP), a computational framework that integrates read depth, template strand and haplotype phase to comprehensively discover SVs in individual cells. We surveyed SV landscapes of 565 single cells, including transformed epithelial cells and patient-derived leukemic samples, to discover abundant SV classes, including inversions, translocations and complex DNA rearrangements. Analysis of the leukemic samples revealed four times more somatic SVs than cytogenetic karyotyping, submicroscopic copy-number alterations, oncogenic copy-neutral rearrangements and a subclonal chromothripsis event. Advancing current methods, single-cell tri-channel processing can directly measure SV mutational processes in individual cells, such as breakage-fusion-bridge cycles, facilitating studies of clonal evolution, genetic mosaicism and SV formation mechanisms, which could improve disease classification for precision medicine.


Assuntos
Biologia Computacional/métodos , Variação Estrutural do Genoma , Leucemia/genética , Análise de Célula Única/métodos , Linhagem Celular , Cromotripsia , Evolução Clonal , Rearranjo Gênico , Humanos , Mutação INDEL , Inversão de Sequência , Translocação Genética
12.
Evol Bioinform Online ; 15: 1176934319863068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384125

RESUMO

Third-generation sequencing using nanopores as biosensors has recently emerged as a strategy capable to overcome next-generation sequencing drawbacks and pitfalls. Assessing the quality of the data produced by nanopore sequencing platforms is essential to decide how useful these may be in making biological discoveries. Here, we briefly contextualized NanoR, a quality control method for nanopore sequencing data we developed, in the scenario of preexistent similar tools. We also illustrated 2 quality control pipelines, readily applicable to nanopore sequencing data, respectively, based on NanoR and PyPore, a second quality control method published by our group.

13.
PLoS One ; 14(5): e0216471, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071140

RESUMO

MinION and GridION X5 from Oxford Nanopore Technologies are devices for real-time DNA and RNA sequencing. On the one hand, MinION is the only real-time, low cost and portable sequencing device and, thanks to its unique properties, is becoming more and more popular among biologists; on the other, GridION X5, mainly for its costs, is less widespread but highly suitable for researchers with large sequencing projects. Despite the fact that Oxford Nanopore Technologies' devices have been increasingly used in the last few years, there is a lack of high-performing and user-friendly tools to handle the data outputted by both MinION and GridION X5 platforms. Here we present NanoR, a cross-platform R package designed with the purpose to simplify and improve nanopore data visualization. Indeed, NanoR is built on few functions but overcomes the capabilities of existing tools to extract meaningful informations from MinION sequencing data; in addition, as exclusive features, NanoR can deal with GridION X5 sequencing outputs and allows comparison of both MinION and GridION X5 sequencing data in one command. NanoR is released as free package for R at https://github.com/davidebolo1993/NanoR.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Análise de Sequência de DNA , Software
14.
Bioinformatics ; 35(21): 4213-4221, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30949684

RESUMO

MOTIVATION: The past few years have seen the emergence of nanopore-based sequencing technologies which interrogate single molecule of DNA and generate reads sequentially. RESULTS: In this paper, we demonstrate that, thanks to the sequentiality of the nanopore process, the data generated in the first tens of minutes of a typical MinION/GridION run can be exploited to resolve the alterations of a human genome at a karyotype level with a resolution in the order of tens of Mb, while the data produced in the first 6-12 h allow to obtain a resolution comparable to currently available array-based technologies, and thanks to a novel probabilistic approach are capable to predict the allelic fraction of genomic alteration with high accuracy. To exploit the unique characteristics of nanopore sequencing data we developed a novel software tool, Nano-GLADIATOR, that is capable to perform copy number variants/alterations detection and allelic fraction prediction during the sequencing run ('On-line' mode) and after experiment completion ('Off-line' mode). We tested Nano-GLADIATOR on publicly available ('Off-line' mode) and on novel whole genome sequencing dataset generated with MinION device ('On-line' mode) showing that our tool is capable to perform real-time copy number alterations detection obtaining good results with respect to other state-of-the-art tools. AVAILABILITY AND IMPLEMENTATION: Nano-GLADIATOR is freely available at https://sourceforge.net/projects/nanogladiator/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Nanoporos , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento por Nanoporos , Análise de Sequência de DNA , Software
15.
Reprod Domest Anim ; 54(5): 756-761, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30803062

RESUMO

The objective was to compare embryo yield and quality in lactating dairy cows superovulated (SO) with varying amounts of gonadotropins and FSH:LH ratios and inseminated with SexedULTRA™ sex-sorted semen. The SO treatments (n = 77) involved 3 protocols: groups F700 and F1000 were given total doses of 700 and 1,000 IU of Folltropin (FSH:LH ratio 49:1), respectively, whereas group F700P300 was given 700 IU of Folltropin + 300 IU of Pluset (FSH:LH ratio 1:1). Cows were artificially inseminated 3 times over a 10-hr interval with frozen-thawed SexedULTRA™ sex-sorted semen (total of 10 × 106 sex-sorted sperm), starting 18 hr after onset of oestrus, with embryos/ova recovered 7 d after oestrus. Total number of recovered structures and transferable embryos were lower (p < 0.05) in F700 (4.7 ± 3.0 and 1.9 ± 1.7, respectively; mean ± SD) compared to F1000 (8.1 ± 3.8 and 4.4 ± 2.6) and F700P300 (8.5 ± 6.4 and 4.5 ± 3.3). Percentage of cows ovulating >50% of follicles ≥0.8 cm in diameter was lower (p < 0.05) in F700 (35.5%) than in F1000 (82.4%) and F700P300 (73.1%). Percentage of unfertilized oocytes was higher (p < 0.05) in F700 (45.0% vs. 27.7% for F1000 and 29.0% for F700P300) whereas percentage of morulae was higher (p < 0.05) in F1000 (19.3% vs. 8.7% for F700 and 12.2% for F700P300). Embryo quality was similar among groups (p > 0.05). In conclusion, embryo production in lactating dairy cows was improved by increasing total dose of gonadotropins from 700 to 1,000 IU, with SexedULTRA™ sex-sorted semen yielding satisfactory fertilization rates and embryo quality.


Assuntos
Inseminação Artificial/veterinária , Indução da Ovulação/veterinária , Sêmen/fisiologia , Pré-Seleção do Sexo/veterinária , Superovulação/fisiologia , Animais , Cruzamento , Bovinos/fisiologia , Transferência Embrionária/veterinária , Embrião de Mamíferos , Feminino , Masculino , Indução da Ovulação/métodos
16.
Phys Rev Lett ; 101(16): 164801, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999674

RESUMO

Beam deflection due to axial channeling in a silicon crystal bent along the 111 axis was observed with 400 GeV/c protons at the CERN Super Proton Synchrotron. The condition for doughnut scattering of protons by the atomic strings of the crystal was attained. Such a condition allowed one to observe a beam deflection of 50 murad with about 30% efficiency. The contribution of hyperchanneled states of protons to the observed beam deflection was less than 2% according to simulation results.

17.
Rev Sci Instrum ; 79(2 Pt 1): 023303, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315289

RESUMO

A high performance apparatus has been designed and built by the H8-RD22 collaboration for the study of channeling and volume reflection phenomena in the interaction of 400 GeV/c protons with bent silicon crystals, during the 2006 data taking in the external beamline H8 of the CERN SPS. High-quality silicon short crystals were bent by either anticlastic or quasimosaic effects. Alignment with the highly parallel (8 murad divergence) proton beam was guaranteed through a submicroradian goniometric system equipped with both rotational and translational stages. Particle tracking was possible by a series of silicon microstrip detectors with high-resolution and a parallel plate gas chamber, triggered by various scintillating detectors located along the beamline. Experimental observation of volume reflection with 400 GeV/c protons proved true with a deflection angle of (10.4+/-0.5) murad with respect to the unperturbed beam, with a silicon crystal whose (111) planes were parallel to the beam.

18.
Phys Rev Lett ; 98(15): 154801, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17501358

RESUMO

The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...