Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076340

RESUMO

Compensatory growth (CG) is accelerated growth that occurs when food availability increases after food restriction. This rapid growth may be associated with sublethal consequences. In this study, we investigated the effects of food restriction and subsequent realimentation and CG on bone structure in juvenile green turtles (Chelonia mydas). Turtles were fed ad libitum food for 12 weeks (AL), restricted food for 12 weeks (R), or restricted food for 5 weeks followed by ad libitum food for 7 weeks (R-AL). R-AL turtles demonstrated partial CG via enhanced food conversion efficiency (FCE) upon realimentation. After the 12th week, gross morphology (GM), microarchitecture, and mineralization of the right humerus of each turtle were analyzed. Many GM measurements (including proximal and maximal bone lengths, bone widths, and shaft thickness), most measurements of bone microarchitecture (excluding cortical and trabecular thickness and trabecular separation), and all mineralization measurements were labile in response to intake. We examined the possibility that changes in nutrient allocation to bone structure during realimentation facilitated CG in previously food-restricted turtles. Restoration of bone lengths was prioritized over restoration of bone widths during CG. Furthermore, restoration of trabecular number, connectivity density, and bone volume fraction was prioritized over restoration of cortical bone volume fraction. Finally, diaphyseal bone mineralization was partially restored, whereas no restoration of epiphyseal bone mineralization occurred during CG. Shifts in nutrient allocation away from certain bone attributes during food restriction that were not rectified when food availability increased probably provided an energy surplus that enhanced the conversion of food to growth and thus powered the CG response. Our study revealed how resource allocation to various bone attributes is prioritized as nutritional conditions change during development. These "priority rules" may have detrimental consequences later in life, indicating that conservation of green turtle foraging grounds should be given high priority.

2.
PLoS One ; 18(10): e0292727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856523

RESUMO

The threat of population declines caused by pelagic longline fisheries in the Atlantic has increased the concern to find strategies that minimize the bycatch and mortality of non-target marine animals. Gear modification, such as the use of circle hooks instead of conventional J-hooks, has been identified as an effective bycatch reduction strategy in different pelagic longline fisheries around the world. This study aimed to verify the effectiveness of the use of circle hooks by quantifying catch rates, relative size selectivity, and anatomical hooking position for the most common target species (swordfish, Xiphias gladius, and blue shark, Prionace glauca), and some bycatch species (loggerhead sea turtles, Caretta caretta, and shortfin mako, Isurus oxyrinchus) caught by the Azorean longline fishing fleet. The trial was conducted for five consecutive years (2000-2004) using eight different types of hooks. In general, the blue shark catches using circle hooks were significantly higher compared to J (Mustad 9/0). The circle hooks also showed high probabilities of catching juvenile blue sharks. Conversely, the circle hooks were efficient in reducing the loggerhead sea turtle bycatch and were related to fewer catches of small sea turtle individuals. The use of circle hooks was also associated with reduced swordfish catches compared to J (Mustad 9/0), and the effect of hook types on length at capture was only significant for Circle (L. & P. 18/0-CLP18) and Ringed Tuna (RT). No significant differences were observed comparing hook type to either catch rates or size selectivity for shortfin mako. Additionally, circle hooks were more likely to lodge in the mouth than in deeper anatomical positions, when compared to J (Mustad 9/0), for the four species analysed. The present study demonstrated that the use of circle hooks could mitigate the impact of the pelagic longline fisheries in the Azores by decreasing the bycatch of sea turtles and reducing animal injuries caused by deep hooking.


Assuntos
Tubarões , Tartarugas , Humanos , Animais , Conservação dos Recursos Naturais , Pesqueiros , Atum
3.
Sci Rep ; 13(1): 15129, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704665

RESUMO

Drifting aggregations of Sargassum algae provide critical habitat for endemic, endangered, and commercially important species. They may also provide favorable microclimates for associated fauna. To quantify thermal characteristics of holopelagic Sargassum aggregations, we evaluated thermal profiles of 50 aggregations in situ in the Sargasso Sea. Sea surface temperature (SST) in the center of aggregations was significantly higher than in nearby open water, and SST differential was independent of aggregation volume, area, and thickness. SST differential between aggregation edge and open water was smaller than those between aggregation center and aggregation edge and between aggregation center and open water. Water temperature was significantly higher inside and below aggregations compared to open water but did not vary inside aggregations with depth. Holopelagic Sargassum aggregations provide warmer microhabitats for associated fauna, which may benefit marine ectotherms, though temperature differentials were narrow (up to 0.7 °C) over the range of aggregation sizes we encountered (area 0.01-15 m2). We propose a hypothetical curve describing variation in SST differential with Sargassum aggregation size as a prediction for future studies to evaluate across temporal and geographic ranges. Our study provides a foundation for investigating the importance of thermal microhabitats in holopelagic Sargassum ecosystems.


Assuntos
Ecossistema , Sargassum , Microclima , Temperatura , Água
4.
Mol Ecol ; 30(23): 6178-6192, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390061

RESUMO

Reconstructing past events of hybridization and population size changes are required to understand speciation mechanisms and current patterns of genetic diversity, and ultimately contribute to species' conservation. Sea turtles are ancient species currently facing anthropogenic threats including climate change, fisheries, and illegal hunting. Five of the seven extant sea turtle species are known to currently hybridize, especially along the Brazilian coast where some populations can have ~32%-42% of hybrids. Although frequently observed today, it is not clear what role hybridization plays in the evolutionary diversification of this group of reptiles. In this study, we generated whole genome resequencing data of the five globally distributed sea turtle species to estimate a calibrated phylogeny and the population size dynamics, and to understand the role of hybridization in shaping the genomes of these ancient species. Our results reveal discordant species divergence dates between mitochondrial and nuclear genomes, with a high frequency of conflicting trees throughout the nuclear genome suggesting that some sea turtle species frequently hybridized in the past. The reconstruction of the species' demography showed a general decline in effective population sizes with no signs of recovery, except for the leatherback sea turtle. Furthermore, we discuss the influence of reference bias in our estimates. We show long-lasting ancestral gene flow events within Chelonioidea that continued for millions of years after initial divergence. Speciation with gene flow is a common pattern in marine species, and it raises questions whether current hybridization events should be considered as a part of these species' evolutionary history or a conservation issue.


Assuntos
Tartarugas , Animais , Fluxo Gênico , Genoma , Caça , Hibridização Genética , Tartarugas/genética
5.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653718

RESUMO

Although hydrogen isotopes (δ2H) are commonly used as tracers of animal movement, minimal research has investigated the use of δ2H as a proxy to quantify resource and habitat use. While carbon and nitrogen are ultimately derived from a single source (food), the proportion of hydrogen in consumer tissues originates from two distinct sources: body water and food. Before hydrogen isotopes can be effectively used as a resource and habitat tracer, we need estimates of (net) discrimination factors (Δ2HNet) that account for the physiologically mediated differences in the δ2H values of animal tissues relative to that of the food and water sources they use to synthesize tissues. Here, we estimated Δ2HNet in captive green turtles (Chelonia mydas) by measuring the δ2H values of tissues (epidermis and blood components) and dietary macromolecules collected in two controlled feeding experiments. Tissue δ2H and Δ2HNet values varied systematically among tissues, with epidermis having higher δ2H and Δ2HNet values than blood components, which mirrors patterns between keratinaceous tissues (feathers, hair) and blood in birds and mammals. Serum/plasma of adult female green turtles had significantly lower δ2H values compared with juveniles, likely due to increased lipid mobilization associated with reproduction. This is the first study to quantify Δ2HNet values in a marine ectotherm, and we anticipate that our results will further refine the use of δ2H analysis to better understand animal resource and habitat use in marine ecosystems, especially coastal areas fueled by a combination of marine (e.g. micro/macroalgae and seagrass) and terrestrial (e.g. mangroves) primary production.


Assuntos
Tartarugas , Animais , Isótopos de Carbono/análise , Ecossistema , Feminino , Hidrogênio , Isótopos de Nitrogênio/análise
6.
Ecology ; 101(12): e03180, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882749

RESUMO

What happens in meadows after populations of natural grazers rebound following centuries of low abundance? Many seagrass ecosystems are now experiencing this phenomenon with the recovery of green turtles (Chelonia mydas), large-bodied marine herbivores that feed on seagrasses. These seagrass ecosystems provide a rare opportunity to study ecosystem-wide shifts that result from a recovery of herbivores. We evaluate changes in regulation of seagrass productivity in a naturally grazed tropical ecosystem by (1) comparing Thalassia testudinum productivity in grazed and ungrazed areas and (2) evaluating potential regulating mechanisms of T. testudinum productivity. We established 129 green turtle exclusion cages in grazed and ungrazed areas to quantify T. testudinum growth (linear, area, mass, productivity : biomass [P:B]). In each exclosure, we recorded temperature, irradiance, water depth, nitrogen : phosphorus ratio (N:P) of blade tissue, grazing intensity before cage placement, and T. testudinum structural and nutrient characteristics. Thalassia testudinum exhibited compensatory growth in grazed areas via stimulated blade linear growth, blade area growth, and P:B across seasonal high and low growth periods and in shallow (3-4 m) and deep (9-10 m) seagrass meadows. Irradiance, depth, and N:P ratios had significant roles in regulating mass growth and P:B of T. testudinum in ungrazed areas. Depth was a significant regulating factor of mass growth and P:B in grazed areas; rates were higher and more variable in shallow meadows than in deep meadows. Grazing intensity was also a significant regulating factor for P:B, stimulating tissue turnover with increasing grazing pressure. This study provides important insights into how recovery of a large marine herbivore can result in dramatic, sustainable changes in the regulation of seagrass productivity. We also highlight the need for a historical perspective and use of appropriate indicators, including P:B and grazing intensity, when evaluating seagrass response to green turtle grazing as meadows are returned to a natural grazed state. In an age of green turtle recovery and global seagrass decline due to anthropogenic threats, a thorough understanding of green turtle-seagrass interactions at the ecosystem level is critical to ensure the restoration of seagrass ecosystems and continued recovery of green turtle populations.


Assuntos
Ecossistema , Hydrocharitaceae , Animais , Biomassa , Região do Caribe , Herbivoria
7.
PLoS One ; 15(4): e0231325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32282844

RESUMO

Population assessments conducted at reproductive sites of migratory species necessitate understanding the foraging-area origins of breeding individuals. Without this information, efforts to contextualize changes in breeding populations and develop effective management strategies are compromised. We used stable isotope analysis of tissue samples collected from loggerhead sea turtles (Caretta caretta) nesting at seven sites in the Northern Recovery Unit (NRU) of the eastern United States (North Carolina, South Carolina and Georgia) to assign females to three separate foraging areas in the Northwest Atlantic Ocean (NWA). We found that the majority of the females at NRU nesting sites (84.4%) use more northern foraging areas in the Mid-Atlantic Bight, while fewer females use more proximate foraging areas in the South Atlantic Bight (13.4%) and more southerly foraging areas in the Subtropical Northwest Atlantic (2.2%). We did not find significant latitudinal or temporal trends in the proportions of NRU females originating from different foraging areas. Combining these findings with previous data from stable isotope and satellite tracking studies across NWA nesting sites showed that variation in the proportion of adult loggerheads originating from different foraging areas is primarily related differences between recovery units: individuals in the NRU primarily use the Mid-Atlantic Bight foraging area, while individuals from the three Florida recovery units primarily use the Subtropical Northwest Atlantic and Eastern Gulf of Mexico foraging areas. Because each foraging area is associated with its own distinct ecological characteristics, environmental fluctuations and anthropogenic threats that affect the abundance and productivity of individuals at nesting sites, this information is critical for accurately evaluating population trends and developing effective region-specific management strategies.


Assuntos
Cruzamento , Tartarugas/fisiologia , Migração Animal , Animais , Oceano Atlântico , Feminino , Comportamento de Nidação , Tartarugas/crescimento & desenvolvimento
8.
Sci Rep ; 9(1): 14392, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591419

RESUMO

Understanding the population composition and dynamics of migratory megafauna at key developmental habitats is critical for conservation and management. The present study investigated whether differential recovery of Caribbean green turtle (Chelonia mydas) rookeries influenced population composition at a major juvenile feeding ground in the southern Caribbean (Lac Bay, Bonaire, Caribbean Netherlands) using genetic and demographic analyses. Genetic divergence indicated a strong temporal shift in population composition between 2006-2007 and 2015-2016 (ϕST = 0.101, P < 0.001). Juvenile recruitment (<75.0 cm straight carapace length; SCL) from the north-western Caribbean increased from 12% to 38% while recruitment from the eastern Caribbean region decreased from 46% to 20% between 2006-2007 and 2015-2016. Furthermore, the product of the population growth rate and adult female abundance was a significant predictor for population composition in 2015-2016. Our results may reflect early warning signals of declining reproductive output at eastern Caribbean rookeries, potential displacement effects of smaller rookeries by larger rookeries, and advocate for genetic monitoring as a useful method for monitoring trends in juvenile megafauna. Furthermore, these findings underline the need for adequate conservation of juvenile developmental habitats and a deeper understanding of the interactions between megafaunal population dynamics in different habitats.


Assuntos
Ecossistema , Tartarugas/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais , Variação Genética , Dinâmica Populacional , Tartarugas/genética
9.
Sci Rep ; 9(1): 13019, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506566

RESUMO

After hatching, juveniles of most sea turtle species undertake long migrations across ocean basins and remain in oceanic habitats for several years. Assessing population abundance and demographic parameters during this oceanic stage is challenging. Two long-recognized deficiencies in population assessment are (i) reliance on trends in numbers of nests or reproductive females at nesting beaches and (ii) ignorance of factors regulating recruitment to the early oceanic stage. To address these critical gaps, we examined 15 years of standardized loggerhead sighting data collected opportunistically by fisheries observers in the Azores archipelago. From 2001 to 2015, 429 loggerheads were sighted during 67,922 km of survey effort. We used a model-based approach to evaluate the influence of environmental factors and present the first estimates of relative abundance of oceanic-stage juvenile sea turtles. During this period, relative abundance of loggerheads in the Azores tracked annual nest abundance at source rookeries in Florida when adjusted for a 3-year lag. This concurrence of abundance patterns indicates that recruitment to the oceanic stage is more dependent on nest abundance at source rookeries than on stochastic processes derived from short term climatic variability, as previously believed.


Assuntos
Migração Animal , Ecossistema , Comportamento de Nidação/fisiologia , Dinâmica Populacional , Tartarugas/fisiologia , Animais , Feminino , Oceanos e Mares
10.
Ecol Evol ; 9(3): 957-974, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805133

RESUMO

Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean. In theory, the heightened dispersal ability of these animals should limit opportunities for species diversification and population differentiation. To test these predictions, we used next-generation sequencing of genomewide restriction-site-associated DNA tags (RADseq) and traditional mitochondrial DNA sequencing, to investigate the species-level relationships and global population structure of Planes crabs collected from oceanic flotsam and sea turtles. Our results indicate that species diversity in this clade is low-likely three closely related species-with no evidence of cryptic or undescribed species. Moreover, our results indicate weak population differentiation among widely separated aggregations with genetic indices showing only subtle genetic discontinuities across all oceans of the world (RADseq F ST = 0.08-0.16). The results of this study provide unprecedented resolution of the systematics and global biogeography of this group and contribute valuable information to our understanding of how theoretical dispersal potential relates to actual population differentiation and diversification among marine organisms. Moreover, these results demonstrate the limitations of single gene analyses and the value of genomic-level resolution for estimating contemporary population structure in organisms with large, highly connected populations.

11.
Sci Rep ; 8(1): 5852, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643352

RESUMO

Comparative syntheses of key demographic parameters are critical not only for identifying data gaps, but also for evaluating sources of heterogeneity among estimates. Because demographic studies frequently exhibit heterogeneity, evaluating sources of heterogeneity among estimates can inform biological patterns and conservation actions more broadly. To better understand adult survival in marine turtles and avoid drawing inaccurate conclusions from current estimates, we conducted a comprehensive meta-analysis to test how heterogeneity among estimates was partitioned among phylogenetic, biogeographic and methodological factors. Fifty-nine studies from five marine turtle species met the minimum selection criteria for inclusion in our meta-analysis. Heterogeneity among survival estimates was first partitioned between differences in ocean basin (Indo-Pacific versus Atlantic), then by differences among family/tribe within the Indo-Pacific (Chelonini versus Carettini and Dermochelidae). However, apparent differences attributed to biogeography (ocean basin effect) and phylogeny (family/tribe effect) were highly correlated with methodological differences in tag type, model type, habitat type and study duration, thereby confounding biological interpretations and complicating efforts to use many current survival estimates in population assessments. Our results highlight the importance of evaluating sources of heterogeneity when interpreting patterns among similar demographic studies and directly inform efforts to identify research priorities for marine turtles globally.


Assuntos
Filogenia , Filogeografia/métodos , Tartarugas/genética , Animais , Interpretação Estatística de Dados , Oceanos e Mares , Filogeografia/estatística & dados numéricos , Filogeografia/tendências , Dinâmica Populacional/estatística & dados numéricos , Dinâmica Populacional/tendências , Taxa de Sobrevida/tendências
12.
Conserv Physiol ; 6(1): coy006, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479433

RESUMO

Blood analyte reference intervals are scarce for immature life stages of the loggerhead sea turtle (Caretta caretta). The objectives of this study were to (1) document reference intervals of packed cell volume (PCV) and 20 plasma chemistry analytes from wild oceanic-juvenile stage loggerhead turtles from Azorean waters, (2) investigate correlations with body size (minimum straight carapace length: SCLmin) and (3) compare plasma chemistry data to those from older, larger neritic juveniles (<80 cm SCLmin) and adult loggerheads (≥80 cm SCLmin) that have recruited to the West Atlantic in waters around Cape Canaveral, Florida. Twenty-eight Azorean loggerhead turtles with SCLmin of 17.6-60.0 cm (mean 34.9 ± 12.1 cm) were captured, sampled and immediately released. Reference intervals are reported. There were several biologically relevant correlations of blood analytes with SCLmin: positive correlations of PCV, proteins and triglycerides with SCLmin indicated somatic growth, increasing diving activity and/or diet; negative correlations of tissue enzymes with SCLmin suggested faster growth at smaller turtle size, while negative correlations of electrolytes with SCLmin indicated differences in diet, environmental conditions and/or osmoregulation unique to the geographic location. Comparisons of loggerhead turtles from the Azores (i.e. oceanic) and Cape Canaveral (i.e. neritic) identified significant differences regarding diet, somatic growth, and/or environment: in Azorean turtles, albumin, triglycerides and bilirubin increased with SCLmin, while alkaline phosphatase, lactate dehydrogenase and sodium decreased. In larger neritic Cape Canaveral turtles, aspartate aminotransferase increased with SCLmin, while the albumin:globulin ratio, phosphorus and cholesterol decreased. These differences suggest unique physiological disparities between life stage development and migration, reflecting biological and habitat differences between the two populations. This information presents biologically important data that is applicable to stranded individual turtles and to the population level, a tool for the development of conservation strategies, and a baseline for future temporal and spatial investigations of the Azorean loggerhead sea turtle population.

13.
Sci Rep ; 7(1): 13545, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051581

RESUMO

Seagrass meadows are important sites for carbon storage. Green turtles (Chelonia mydas) are marine megaherbivores that consume seagrass throughout much of their global range. With successful conservation efforts, turtle abundance will increase, leading to more meadows being returned to their natural grazed state. There is concern this may lead to a loss of carbon stored in these systems, but the effects of green turtle grazing on seagrass ecosystem carbon dynamics have not been investigated. Here we experimentally show that despite 79% lower net ecosystem production (NEP) following grazing (24.7 vs. 119.5 mmol C m-2 d-1) in a Caribbean Thalassia testudinum seagrass meadow, grazed areas maintained net positive metabolic carbon uptake. Additionally, grazing did not change the meadow production to respiration ratio, indicating it did not stimulate remineralization of sediment carbon stores. Compared to other published estimates of seagrass NEP (median: 20.6 mmol C m-2 d-1), NEP in grazed Caribbean T. testudinum meadows is similar to that in many other ungrazed systems. Our results demonstrate that while grazing does decrease potential future carbon sequestration as a result of lower NEP, it does not promote a metabolic release of current carbon stocks.


Assuntos
Carbono/metabolismo , Hydrocharitaceae/metabolismo , Tartarugas/crescimento & desenvolvimento , Animais , Biomassa , Sequestro de Carbono , Pradaria
14.
J Parasitol ; 103(6): 756-767, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28816609

RESUMO

Neospirorchis (Digenea: "Spirorchiidae") are blood flukes of sea turtles. Trematodes tentatively identified as Neospirorchis sp. infect various sites within sea turtles inhabiting waters of the southeastern United States, but efforts to obtain specimens adequate for morphologic study has proven difficult. Two genetic targets, the internal transcribed spacer region of the ribosomal RNA gene and the partial mitochondrial cytochrome c oxidase subunit I gene, were used to investigate potential diversity among parasite specimens collected from stranded sea turtles. Sequence data were obtained from 215 trematode and egg specimens collected from 92 individual free-ranging cheloniid sea turtles comprising 4 host species. Molecular analysis yielded more than 20 different genotypes. We were able to assign 1 genotype to 1 of the 2 recognized species, Neospirorchis pricei Manter and Larson, 1950 . In many examples, genotypes exhibited host and site specificity. Our findings indicate considerable diversity of parasites resembling Neospirorchis with evidence of a number of uncharacterized blood flukes that require additional study.


Assuntos
Trematódeos/classificação , Infecções por Trematódeos/veterinária , Tartarugas/parasitologia , Animais , Oceano Atlântico , Biodiversidade , DNA de Helmintos/genética , DNA Intergênico/química , DNA Mitocondrial/genética , DNA Ribossômico/genética , Florida , Golfo do México , Especificidade de Hospedeiro , Filogenia , Trematódeos/genética , Trematódeos/fisiologia , Infecções por Trematódeos/parasitologia
15.
Mar Pollut Bull ; 121(1-2): 222-229, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28606614

RESUMO

Juvenile oceanic-stage sea turtles are particularly vulnerable to the increasing quantity of plastic coming into the oceans. In this study, we analysed the gastrointestinal tracts of 24 juvenile oceanic-stage loggerheads (Caretta caretta) collected off the North Atlantic subtropical gyre, in the Azores region, a key feeding ground for juvenile loggerheads. Twenty individuals were found to have ingested marine debris (83%), composed exclusively of plastic items (primarily polyethylene and polypropylene) identified by µ-Fourier Transform Infrared Spectroscopy. Large microplastics (1-5mm) represented 25% of the total number of debris and were found in 58% of the individuals sampled. Average number of items was 15.83±6.09 (±SE) per individual, corresponding to a mean dry mass of 1.07±0.41g. The results of this study demonstrate that plastic pollution acts as another stressor for this critical life stage of loggerhead turtles in the North Atlantic.


Assuntos
Comportamento Alimentar , Plásticos , Tartarugas , Animais , Açores , Ingestão de Alimentos , Oceanos e Mares
16.
Glob Chang Biol ; 23(11): 4556-4568, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28378354

RESUMO

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.


Assuntos
Tartarugas/crescimento & desenvolvimento , Animais , Oceano Atlântico , Tamanho Corporal , Ecologia , Temperatura
17.
Ecol Appl ; 26(7): 2145-2155, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755731

RESUMO

Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster.


Assuntos
Distribuição Animal , Biomarcadores Ambientais , Poluição por Petróleo , Tartarugas/fisiologia , Animais , Isótopos de Carbono , Feminino , Golfo do México , Isótopos de Nitrogênio , Pele/química , Pele/patologia
18.
Ecol Appl ; 25(2): 320-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26263657

RESUMO

Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: (1) a nominal approach through discriminant analysis and (2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively determine geographic origin for large numbers of untracked individuals. Regular monitoring of sea turtle nesting aggregations with stable isotope sampling can be used to fill critical data gaps regarding habitat use and migration patterns. Probabilistic assignment to origin with isoscapes has not been previously used in the marine environment, but the methods presented here could also be applied to other migratory marine species.


Assuntos
Migração Animal/fisiologia , Carbono/química , Nitrogênio/química , Tartarugas/fisiologia , Distribuição Animal , Sistemas de Identificação Animal , Animais , Isótopos de Carbono , Comportamento de Nidação , Isótopos de Nitrogênio , Astronave , Fatores de Tempo
19.
Rapid Commun Mass Spectrom ; 28(19): 2059-64, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156595

RESUMO

RATIONALE: Stable isotope analysis has been used extensively to provide ecological information about diet and foraging location of many species. The difference in isotopic composition between animal tissue and its diet, or the diet-tissue discrimination factor, varies with tissue type. Therefore, direct comparisons between isotopic values of tissues are inaccurate without an appropriate conversion factor. We focus on the loggerhead sea turtle (Caretta caretta), for which a variety of tissues have been used to examine diet, habitat use, and migratory origin through stable isotope analysis. We calculated tissue-to-tissue conversions between two commonly sampled tissues. METHODS: Epidermis and scute (the keratin covering on the carapace) were sampled from 33 adult loggerheads nesting at two beaches in Florida (Casey Key and Canaveral National Seashore). Carbon and nitrogen stable isotope ratios were measured in the epidermis and the youngest portion of the scute tissue, which reflect the isotopic composition of the diet and habitat over similar time periods of the order of several months. RESULTS: Significant linear relationships were observed between the δ(13)C and δ(15)N values of these two tissues, indicating they can be converted reliably. CONCLUSIONS: Whereas both epidermis and scute samples are commonly sampled from nesting sea turtles to study trophic ecology and habitat use, the data from these studies have not been comparable without reliable tissue-to-tissue conversions. The equations provided here allow isotopic datasets using the two tissues to be combined in previously published and subsequent studies of sea turtle foraging ecology and migratory movement. In addition, we recommend that future isotopic comparisons between tissues of any organism utilize linear regressions to calculate tissue-to-tissue conversions.


Assuntos
Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Tartarugas/fisiologia , Animais , Isótopos de Carbono/química , Epiderme/química , Feminino , Modelos Lineares , Isótopos de Nitrogênio/química , Especificidade de Órgãos
20.
PLoS One ; 9(1): e85956, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465810

RESUMO

Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Tartarugas/genética , Animais , Oceano Atlântico , Conservação dos Recursos Naturais , Feminino , Genética Populacional , Haplótipos , Oceano Índico , Mar Mediterrâneo , Mitocôndrias/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...