Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3859, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386022

RESUMO

Understanding the connection between seismic activity and the earthquake nucleation process is a fundamental goal in earthquake seismology with important implications for earthquake early warning systems and forecasting. We use high-resolution acoustic emission (AE) waveform measurements from laboratory stick-slip experiments that span a spectrum of slow to fast slip rates to probe spatiotemporal properties of laboratory foreshocks and nucleation processes. We measure waveform similarity and pairwise differential travel-times (DTT) between AEs throughout the seismic cycle. AEs broadcasted prior to slow labquakes have small DTT and high waveform similarity relative to fast labquakes. We show that during slow stick-slip, the fault never fully locks, and waveform similarity and pairwise differential travel times do not evolve throughout the seismic cycle. In contrast, fast laboratory earthquakes are preceded by a rapid increase in waveform similarity late in the seismic cycle and a reduction in differential travel times, indicating that AEs begin to coalesce as the fault slip velocity increases leading up to failure. These observations point to key differences in the nucleation process of slow and fast labquakes and suggest that the spatiotemporal evolution of laboratory foreshocks is linked to fault slip velocity.


Assuntos
Terremotos , Procedimentos de Cirurgia Plástica , Laboratórios , Viagem
2.
J Geophys Res Solid Earth ; 127(6): e2022JB024170, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35864884

RESUMO

Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick-slip experiments were conducted at a constant loading rate of 8 µm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high-frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 µm/s. The peak amplitude of the high-frequency time-domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high-frequency radiation. Experiments demonstrate that the origin of the high-frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.

3.
J Geophys Res Solid Earth ; 126(11): e2021JB022175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35865108

RESUMO

Understanding the temporal evolution of foreshocks and their relation to earthquake nucleation is important for earthquake early warning systems, earthquake hazard assessment, and earthquake physics. Laboratory experiments on intact rock and rough fractures have demonstrated that the number and size of acoustic emission (AE) events increase and that the Gutenberg-Richter b-value decreases prior to coseismic failure. However, for lab fault zones of finite width, where shear occurs within gouge, the physical processes that dictate temporal variations in frequency-magnitude (F/M) statistics of lab foreshocks are unclear. Here, we report on a series of laboratory experiments to illuminate the physical processes that govern temporal variations in b-value and AE size. We record AE data continuously for hundreds of lab seismic cycles and report F/M statistics. Our foreshock catalogs include cases where F/M data are not exponentially distributed, but we retain the concept of b-value for comparison with other works. We find that b-value decreases as the fault approaches failure, consistent with previous works. We also find that b-value scales inversely with shear velocity and fault slip rate, suggesting that fault slip acceleration during earthquake nucleation could impact foreshock F/M statistics. We propose that fault zone dilation and grain mobilization have a strong influence on foreshock magnitude. Fault dilation at higher shearing rates increases porosity and results in larger foreshocks and smaller b-values. Our observations suggest that lab earthquakes are preceded by a preparatory nucleation phase with systematic variations in AE and fault zone properties.

4.
J Geophys Res Solid Earth ; 125(8): e2019JB018975, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33282618

RESUMO

Machine learning can predict the timing and magnitude of laboratory earthquakes using statistics of acoustic emissions. The evolution of acoustic energy is critical for lab earthquake prediction; however, the connections between acoustic energy and fault zone processes leading to failure are poorly understood. Here, we document in detail the temporal evolution of acoustic energy during the laboratory seismic cycle. We report on friction experiments for a range of shearing velocities, normal stresses, and granular particle sizes. Acoustic emission data are recorded continuously throughout shear using broadband piezo-ceramic sensors. The coseismic acoustic energy release scales directly with stress drop and is consistent with concepts of frictional contact mechanics and time-dependent fault healing. Experiments conducted with larger grains (10.5 µm) show that the temporal evolution of acoustic energy scales directly with fault slip rate. In particular, the acoustic energy is low when the fault is locked and increases to a maximum during coseismic failure. Data from traditional slide-hold-slide friction tests confirm that acoustic energy release is closely linked to fault slip rate. Furthermore, variations in the true contact area of fault zone particles play a key role in the generation of acoustic energy. Our data show that acoustic radiation is related primarily to breaking/sliding of frictional contact junctions, which suggests that machine learning-based laboratory earthquake prediction derives from frictional weakening processes that begin very early in the seismic cycle and well before macroscopic failure.

5.
Clin Chim Acta ; 507: 62-68, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32298681

RESUMO

BACKGROUND: The neuronal ceroid lipofuscinosis 2 (NCL2) or classic late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurogenetic disorder caused by mutations in the TPPI gene, which codes for the lysosomal tripeptidyl peptidase 1 (TPPI) EC 3.4.14.9. Loss of functional TPPI activity results in progressive visual and neurological symptoms starting at around 1-2 years of age causing early death. METHODS: We report a DBS-based TPPI assay that cleaves a synthetic tetrapeptide substrate generating a product that is detected by HPLC. Probands and carriers were identified with 100% accuracy (7 probands, 30 carriers, 13 controls). RESULTS: The assay detected a single TPPI activity at a lower pH towards the substrate tested. TPPI activity measurable when extracted at lower pH while inactive at neutral pH showed steady increase for at least 8 h incubation. No loss in TPPI activity was observed when DBS were stored for at least 2 weeks either in freezer, refrigerator, room temperature or 42 °C. CONCLUSION: A sequence variant causing Arg339Gln substitution in a proband had 12% TPPI. TPPI activity can be reliably measured in DBS, giving an opportunity to diagnose NCL2 at birth and refer patients for enzyme replacement or other therapies for earliest intervention, or alternatively offers a second-tier confirmatory test.


Assuntos
Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Teste em Amostras de Sangue Seco , Lipofuscinoses Ceroides Neuronais/sangue , Lipofuscinoses Ceroides Neuronais/diagnóstico , Serina Proteases/metabolismo , Aminopeptidases/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/sangue , Humanos , Lipofuscinoses Ceroides Neuronais/enzimologia , Serina Proteases/sangue , Tripeptidil-Peptidase 1
6.
PLoS One ; 7(4): e34845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514676

RESUMO

Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and ß-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32)P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and ß-adaptins led to dissociation of the AP2 complex, and released only ß-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and ß-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Células CHO , Cricetinae , Dinamina I/metabolismo , Eletroforese em Gel de Poliacrilamida , Endocitose , Feminino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ratos , Quinases Dyrk
7.
Neurochem Res ; 34(9): 1658-67, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19322656

RESUMO

Ataxia telangiectasia (A-T) is a progressive neurodegenerative disorder caused by disruption of the gene, ataxia telangiectasia mutated (ATM). Present study was aimed at identifying proteins that are present in abnormal levels in A-T brain that may identify alternative targets for therapeutic interventions. Proteomic and Western blot analysis have shown massive expression of the small heat shock protein 27 (Hsp27) in frontal cortices of A-T brains compared to negligible levels in controls. The expression of other stress proteins, Hsp70, alphaB-crystallin, and prohibitin remained unchanged in the A-T and control brains. Significant decreases in reactive oxygen species, protein carbonyl groups and lipid peroxidation products were observed in the A-T brains. There is no evidence of caspase 3 activation or DAXX mediated apoptosis. We propose that neurons in the frontal lobe are protected by the expression of Hsp27, which scavenges the oxidative stress molecules formed consequent to the primary loss of ATM function.


Assuntos
Ataxia Telangiectasia/metabolismo , Encéfalo/metabolismo , Proteínas de Choque Térmico HSP27/biossíntese , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Química Encefálica , Caspase 3/metabolismo , Proteínas de Ciclo Celular , Criança , Proteínas de Ligação a DNA , Feminino , Proteínas de Choque Térmico , Humanos , Masculino , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor , Adulto Jovem
8.
Biochemistry ; 47(33): 8491-503, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18656952

RESUMO

Exon 15 of the fragile X mental retardation protein gene (FMR1) is alternatively spliced into three variants. The amino acids encoded by the 5' end of the exon contain several regulatory determinants including phosphorylation sites and a potential conformational switch. Residues encoded by the 3' end of the exon specify FMRP's RGG box, an RNA binding domain that interacts with G-quartet motifs. Previous studies demonstrated that the exon 15-encoded N-terminal residues influence the extent of arginine methylation, independent of S 500 phosphorylation. In the present study we focus on the role the putative conformational switch plays in arginine methylation. Chemical and structural probing of Ex15 alternatively spliced variant proteins and several mutants leads to the following conclusions: Ex15c resides largely in a conformation that is refractory toward methylation; however, it can be methylated by supplementing extracts with recombinant PRMT1 or PRMT3. Protein modeling studies reveal that the RG-rich region is part of a three to four strand antiparallel beta-sheet, which in other RNA binding proteins functions as a platform for nucleic acid interactions. In the Ex15c variant the first strand of this sheet is truncated, and this significantly perturbs the side-chain conformations of the arginine residues in the RG-rich region. Mutating R 507 in the conformational switch to K also truncates the first strand of the beta-sheet, and corresponding decreases in in vitro methylation were found for this and R 507/R 544 and R 507/R 546 double mutants. These effects are not due to the loss of R 507 methylation as a conformational switch-containing peptide reacted under substrate excess and in methyl donor excess was not significantly methylated. Consistent with this, similar changes in beta-sheet structure and decreases in in vitro methylation were observed with a W 513-K mutant. These data support a novel model for FMRP arginine methylation and a role for conformational switch residues in arginine modification.


Assuntos
Arginina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Éxons , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células PC12 , Mutação Puntual , Conformação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes , Deleção de Sequência
9.
Biochemistry ; 46(25): 7614-24, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17536841

RESUMO

The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is localized in human chromosome 21, and its overexpression has been associated with the learning and memory deficits of Down syndrome. DYRK1A contains a Y319XY321 motif shared by all members of the DYRK protein kinase family. Residue Y321 in the motif is phosphorylated in DYRK1A prepared from Escherichia coli and from eukaryotic cells. It has been proposed that the YXY motif is an equivalent of the TXY motif, the activation loop, of mitogen-activated protein kinase and that phosphorylation at the motif is required for DYRK activity. In this study, the role of tyrosine phosphorylation in the activity of DYRK1A was investigated in detail. Wild-type DYRK1A with a reduced level of phosphotyrosine (pY) was prepared by treating E. coli-produced DYRK1A with two different protein tyrosine phosphatases. The resulting pY-depleted DYRK1A could not regain pY during autophosphorylation but was as active as the untreated control. These findings were further supported by the observation that DYRK1A retained significant enzymatic activity when both tyrosine residues in the YXY motif were replaced with either histidine or glutamine. Together, we conclude that tyrosine phosphorylation and tyrosine residues in the YXY motif are not directly involved in DYRK1A enzymatic activity in vitro.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Escherichia coli/genética , Ácido Glutâmico/metabolismo , Histidina/metabolismo , Humanos , Técnicas In Vitro , Cinética , Espectrometria de Massas , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes/metabolismo , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA