Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2216975120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848579

RESUMO

Over the last few decades, symbiosis and the concept of holobiont-a host entity with a population of symbionts-have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (102 to 103 times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned.


Assuntos
Biomineralização , Elétrons , Fenômenos Físicos , Biofísica
2.
Bioresour Technol ; 371: 128631, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646358

RESUMO

Hydrothermal liquefaction (HTL) produces bio-crude oil from wet algae along with an aqueous phase (AP). This effluent contains minerals that can be reused for cultivating new microalgae but whose utility remains limited due to the presence of inhibitors. Reduced photosynthetic performance, growth, and null lipid accumulation were observed in wild-type Chlorella vulgaris NIES 227 cultivated in AP (1/200). Adaptive laboratory evolution was studied by batch transfers and turbidostat mode. Both methods effectively counterbalanced AP toxicity and restored the fitness of the microalgae. After adaptation, a higher AP addition was achieved, from 1/600 to 1/200, without inhibition. As compared with the wild typein control medium (0.261 g/L/d), both adapted-strains maintained competitive productivity (0.310 and 0.258 g/L/d) of lipid-rich biomass (37 %-56 %). The improved tolerance of the adapted strains persisted after the removal of AP and under axenic conditions. Adaptive laboratory evolution is suggested for AP reutilization in the algae production process.


Assuntos
Chlorella vulgaris , Microalgas , Temperatura , Biocombustíveis , Água , Biomassa , Óleos de Plantas
3.
ISME J ; 15(1): 1-18, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839547

RESUMO

Bacteria synthesize a wide range of intracellular submicrometer-sized inorganic precipitates of diverse chemical compositions and structures, called biominerals. Their occurrences, functions and ultrastructures are not yet fully described despite great advances in our knowledge of microbial diversity. Here, we report bacteria inhabiting the sediments and water column of the permanently stratified ferruginous Lake Pavin, that have the peculiarity to biomineralize both intracellular magnetic particles and calcium carbonate granules. Based on an ultrastructural characterization using transmission electron microscopy (TEM) and synchrotron-based scanning transmission X-ray microscopy (STXM), we showed that the calcium carbonate granules are amorphous and contained within membrane-delimited vesicles. Single-cell sorting, correlative fluorescent in situ hybridization (FISH), scanning electron microscopy (SEM) and molecular typing of populations inhabiting sediments affiliated these bacteria to a new genus of the Alphaproteobacteria. The partially assembled genome sequence of a representative isolate revealed an atypical structure of the magnetosome gene cluster while geochemical analyses indicate that calcium carbonate production is an active process that costs energy to the cell to maintain an environment suitable for their formation. This discovery further expands the diversity of organisms capable of intracellular Ca-carbonate biomineralization. If the role of such biomineralization is still unclear, cell behaviour suggests that it may participate to cell motility in aquatic habitats as magnetite biomineralization does.


Assuntos
Alphaproteobacteria , Magnetossomos , Alphaproteobacteria/genética , Biomineralização , Carbonatos , Óxido Ferroso-Férrico , Hibridização in Situ Fluorescente
4.
Geobiology ; 19(2): 199-213, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347698

RESUMO

Achromatium is a long known uncultured giant gammaproteobacterium forming intracellular CaCO3 that impacts C and S geochemical cycles functioning in some anoxic sediments and at oxic-anoxic boundaries. While intracellular CaCO3 granules have first been described as Ca oxalate then colloidal CaCO3 more than one century ago, they have often been referred to as crystalline solids and more specifically calcite over the last 25 years. Such a crystallographic distinction is important since the respective chemical reactivities of amorphous calcium carbonate (ACC) and calcite, hence their potential physiological role and conditions of formation, are significantly different. Here, we analyzed the intracellular CaCO3 granules of Achromatium cells from Lake Pavin using a combination of Raman microspectroscopy and scanning electron microscopy. Granules in intact Achromatium cells were unequivocally composed of ACC. Moreover, ACC spontaneously transformed into calcite when irradiated at high laser irradiance during Raman analyses. Few ACC granules also transformed spontaneously into calcite in lysed cells upon cell death and/or sample preparation. Overall, the present study supports the original claims that intracellular Ca-carbonates in Achromatium are amorphous and not crystalline. In that sense, Achromatium is similar to a diverse group of Cyanobacteria and a recently discovered magnetotactic alphaproteobacterium, which all form intracellular ACC. The implications for the physiology and ecology of Achromatium are discussed. Whether the mechanisms responsible for the preservation of such unstable compounds in these bacteria are similar to those involved in numerous ACC-forming eukaryotes remains to be discovered. Last, we recommend to future studies addressing the crystallinity of CaCO3 granules in Achromatium cells recovered from diverse environments all over the world to take care of the potential pitfalls evidenced by the present study.


Assuntos
Carbonato de Cálcio , Bactérias Aeróbias Gram-Negativas , Carbonatos , Lagos , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...