Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 675108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079574

RESUMO

Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate change. Although the production of phenolic compounds (PCs) has been shown to be modulated by biotic and abiotic stresses, the genetic basis underlying the variation in their constitutive production level remains poorly documented in conifers. We used QTL mapping and RNA-Seq to explore the complex polygenic network underlying the constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years. QTL detection was performed for nine PCs and differentially expressed genes (DEGs) were identified between individuals with high and low PC contents for five PCs exhibiting stable QTLs across time. A total of 17 QTLs were detected for eight metabolites, including one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key transcription factors, and a subset of 137 genes showing opposite expression patterns in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward resolving the genomic architecture of PC production in spruce and facilitate the functional characterization of genes and transcriptional networks responsible for differences in constitutive production of PCs in conifers.

2.
J Exp Bot ; 65(9): 2319-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713992

RESUMO

This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.


Assuntos
Redes Reguladoras de Genes , Picea/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Xilema/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Picea/crescimento & desenvolvimento , Picea/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Fatores de Transcrição/genética , Xilema/genética , Xilema/metabolismo
3.
J Exp Bot ; 65(2): 495-508, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336492

RESUMO

Redundancy and competition between R2R3-MYB activators and repressors on common target genes has been proposed as a fine-tuning mechanism for the regulation of plant secondary metabolism. This hypothesis was tested in white spruce [Picea glauca (Moench) Voss] by investigating the effects of R2R3-MYBs from different subgroups on common targets from distinct metabolic pathways. Comparative analysis of transcript profiling data in spruces overexpressing R2R3-MYBs from loblolly pine (Pinus taeda L.), PtMYB1, PtMYB8, and PtMYB14, defined a set of common genes that display opposite regulation effects. The relationship between the closest MYB homologues and 33 putative target genes was explored by quantitative PCR expression profiling in wild-type P. glauca plants during the diurnal cycle. Significant Spearman's correlation estimates were consistent with the proposed opposite effect of different R2R3-MYBs on several putative target genes in a time-related and tissue-preferential manner. Expression of sequences coding for 4CL, DHS2, COMT1, SHM4, and a lipase thio/esterase positively correlated with that of PgMYB1 and PgMYB8, but negatively with that of PgMYB14 and PgMYB15. Complementary electrophoretic mobility shift assay (EMSA) and transactivation assay provided experimental evidence that these different R2R3-MYBs are able to bind similar AC cis-elements in the promoter region of Pg4CL and PgDHS2 genes but have opposite effects on their expression. Competitive binding EMSA experiments showed that PgMYB8 competes more strongly than PgMYB15 for the AC-I MYB binding site in the Pg4CL promoter. Together, the results bring a new perspective to the action of R2R3-MYB proteins in the regulation of distinct but interconnecting metabolism pathways.


Assuntos
Vias Biossintéticas , Genes de Plantas/genética , Lignina/metabolismo , Picea/genética , Picea/metabolismo , Proteínas de Plantas/metabolismo , Ácido Chiquímico/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Pinus/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Ativação Transcricional/genética
4.
BMC Genomics ; 13: 434, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22931377

RESUMO

BACKGROUND: Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. RESULTS: An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. CONCLUSION: Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Picea/genética , Proteínas de Plantas/genética , Xilema/genética , Transporte Biológico , DNA Complementar/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Variação Genética , Tamanho do Genoma , Família Multigênica , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/classificação , Análise de Sequência de RNA , Água/metabolismo
5.
J Exp Bot ; 61(14): 3847-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20732878

RESUMO

Transcription factors play a fundamental role in plants by orchestrating temporal and spatial gene expression in response to environmental stimuli. Several R2R3-MYB genes of the Arabidopsis subgroup 4 (Sg4) share a C-terminal EAR motif signature recently linked to stress response in angiosperm plants. It is reported here that nearly all Sg4 MYB genes in the conifer trees Picea glauca (white spruce) and Pinus taeda (loblolly pine) form a monophyletic clade (Sg4C) that expanded following the split of gymnosperm and angiosperm lineages. Deeper sequencing in P. glauca identified 10 distinct Sg4C sequences, indicating over-representation of Sg4 sequences compared with angiosperms such as Arabidopsis, Oryza, Vitis, and Populus. The Sg4C MYBs share the EAR motif core. Many of them had stress-responsive transcript profiles after wounding, jasmonic acid (JA) treatment, or exposure to cold in P. glauca and P. taeda, with MYB14 transcripts accumulating most strongly and rapidly. Functional characterization was initiated by expressing the P. taeda MYB14 (PtMYB14) gene in transgenic P. glauca plantlets with a tissue-preferential promoter (cinnamyl alcohol dehydrogenase) and a ubiquitous gene promoter (ubiquitin). Histological, metabolite, and transcript (microarray and targeted quantitative real-time PCR) analyses of PtMYB14 transgenics, coupled with mechanical wounding and JA application experiments on wild-type plantlets, allowed identification of PtMYB14 as a putative regulator of an isoprenoid-oriented response that leads to the accumulation of sesquiterpene in conifers. Data further suggested that PtMYB14 may contribute to a broad defence response implicating flavonoids. This study also addresses the potential involvement of closely related Sg4C sequences in stress responses and plant evolution.


Assuntos
Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Traqueófitas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Ciclopentanos/farmacologia , Genes myb , Dados de Sequência Molecular , Família Multigênica , Oxilipinas/farmacologia , Picea/genética , Picea/metabolismo , Pinus taeda/genética , Pinus taeda/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Populus/genética , Populus/metabolismo , Traqueófitas/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Árvores/genética , Árvores/metabolismo
6.
J Exp Bot ; 59(14): 3925-39, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18805909

RESUMO

The involvement of two R2R3-MYB genes from Pinus taeda L., PtMYB1 and PtMYB8, in phenylpropanoid metabolism and secondary cell wall biogenesis was investigated in planta. These pine MYBs were constitutively overexpressed (OE) in Picea glauca (Moench) Voss, used as a heterologous conifer expression system. Morphological, histological, chemical (lignin and soluble phenols), and transcriptional analyses, i.e. microarray and reverse transcription quantitative PCR (RT-qPCR) were used for extensive phenotyping of MYB-overexpressing spruce plantlets. Upon germination of somatic embryos, root growth was reduced in both transgenics. Enhanced lignin deposition was also a common feature but ectopic secondary cell wall deposition was more strongly associated with PtMYB8-OE. Microarray and RT-qPCR data showed that overexpression of each MYB led to an overlapping up-regulation of many genes encoding phenylpropanoid enzymes involved in lignin monomer synthesis, while misregulation of several cell wall-related genes and other MYB transcription factors was specifically associated with PtMYB8-OE. Together, the results suggest that MYB1 and MYB8 may be part of a conserved transcriptional network involved in secondary cell wall deposition in conifers.


Assuntos
Parede Celular/metabolismo , Picea/metabolismo , Pinus taeda/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Parede Celular/genética , Expressão Gênica , Lignina/metabolismo , Dados de Sequência Molecular , Fenóis/metabolismo , Floema/metabolismo , Picea/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcrição Gênica
7.
Physiol Plant ; 115(4): 523-530, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12121458

RESUMO

Events associated with the induction of tolerance to fast desiccation in black spruce (Picea mariana) somatic embryos were investigated. An experimental approach using an initial period of partial water loss was developed to induce either no, partial, or complete tolerance to fast desiccation. Tolerance to subsequent fast desiccation was not promoted by decreasing embryo water content from 1.5 to 1.1 g H2O g-1 DW (g g-1) throughout the first 24 h of slow desiccation. However, tolerance increased from 10 to 95% germination during the second 24-h period of slow desiccation after partial water loss from 1 to 0.55 g g-1. Emphasis was also placed on the relationship between observed tolerance, and sugar and dehydrin contents. Compared to controls, sucrose content in embryos doubled after 24 h of slow desiccation and more than tripled after 48 h. Conversely, starch content was decreased by one half after 24 h and by three quarters after 48 h. Sucrose abundance and raffinose occurrence after 48 h of slow desiccation were congruent with complete tolerance to fast desiccation. The period of slow desiccation between 24 and 48 h also increased the content of a 24-kDa dehydrin and the appearance of a 42-kDa dehydrin. The relationship between partial water loss, sugars and dehydrins is discussed with respect to tolerance to fast desiccation in black spruce somatic embryos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA