Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 117: e210379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35195164

RESUMO

The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are etiological agents of important neglected tropical diseases, affecting millions of people worldwide, and the drugs available for these diseases present several limitations. Novel efficient and nontoxic drugs are necessary as an alternative to the current chemotherapy. The unique mitochondrion of trypanosomatids and its peculiar features turn this organelle a potential drug target. Several phenotypic studies describe the damage in the parasite mitochondrial ultrastructure, but the molecular target is unknown. Few reports demonstrated the electron transport system (ETS) as a target due to the high similarities to mammalian orthologues, hence ETS is not a good candidate for drug intervention. On the other hand, antioxidant enzymes, such as trypanothione reductase, and an alternative oxidase (AOX) seem to be interesting targets; however no high active inhibitors were developed up to now. Finally, due to the remarkable differences to mammalian machinery, together with the high biological importance for the parasite survival, the mitochondrial import system stands out as a very promising target in trypanosomatids. Archaic translocase of the outer membrane (ATOM) and translocase of the inner membrane (TIM) complexes, which mediate both protein and tRNA import, composed by specific subunits of these parasites, could be excellent candidates, deserving studies focused on the development of specific drugs.


Assuntos
Preparações Farmacêuticas , Trypanosoma brucei brucei , Trypanosoma cruzi , Animais , Humanos , Mitocôndrias , Preparações Farmacêuticas/metabolismo , RNA de Transferência , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética
2.
Mem. Inst. Oswaldo Cruz ; 117: e210379, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360601

RESUMO

The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are etiological agents of important neglected tropical diseases, affecting millions of people worldwide, and the drugs available for these diseases present several limitations. Novel efficient and nontoxic drugs are necessary as an alternative to the current chemotherapy. The unique mitochondrion of trypanosomatids and its peculiar features turn this organelle a potential drug target. Several phenotypic studies describe the damage in the parasite mitochondrial ultrastructure, but the molecular target is unknown. Few reports demonstrated the electron transport system (ETS) as a target due to the high similarities to mammalian orthologues, hence ETS is not a good candidate for drug intervention. On the other hand, antioxidant enzymes, such as trypanothione reductase, and an alternative oxidase (AOX) seem to be interesting targets; however no high active inhibitors were developed up to now. Finally, due to the remarkable differences to mammalian machinery, together with the high biological importance for the parasite survival, the mitochondrial import system stands out as a very promising target in trypanosomatids. Archaic translocase of the outer membrane (ATOM) and translocase of the inner membrane (TIM) complexes, which mediate both protein and tRNA import, composed by specific subunits of these parasites, could be excellent candidates, deserving studies focused on the development of specific drugs.

3.
J Proteomics ; 232: 104077, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33309930

RESUMO

The role of Leishmania braziliensis in the development of different clinical forms of American Tegumentary Leishmaniasis (ATL) is unclear, but it has been suggested that molecules secreted/released by parasites could modulate the clinical outcome. Here, we analyzed the infection rate and cytokine profile of macrophages pretreated with the secretome of two L. braziliensis strains associated with polar clinical forms of ATL: one associated with localized self-healing cutaneous leishmaniasis (LCL) and other associated with the disseminated form (DL). Besides, we use an iTRAQ-based quantitative proteomics approach to compare the abundance of proteins secreted by those strains. In vitro infection demonstrated that pretreatment with secretome resulted in higher number of infected macrophages, as well as higher number of amastigotes per cell. Additionally, macrophages pretreated with LCL secretome exhibited a proinflammatory profile, whereas those pretreated with the DL one did not. These findings suggest that secretomes made macrophages more susceptible to infection and that molecules secreted by each strain modulate, differentially, the macrophages' cytokine profile. Indeed, proteomics analysis showed that the DL secretome is rich in molecules involved in macrophage deactivation, while is poor in proteins that activate proinflammatory pathways. Together, our results reveal new molecules that may contribute to the infection, persistence and dissemination of the parasite. SIGNIFICANCE: Leishmania braziliensis is associated to localized self-healing cutaneous lesions (LCL), disseminated leishmaniasis (DL), and mucocutaneous lesions (MCL). To understand the role of the parasite in those distinct clinical manifestations we evaluated infection rates and cytokine profiles of macrophages pre-treated with secretomes of two L. braziliensis strains associated with DL and LCL, and quantitatively compared these secretomes. The infection index of macrophages pretreated with the DL secretome was significantly higher than that exhibited by non-treated cells. Interestingly, whereas the LCL secretome stimulated a proinflammatory setting, favoring an effector cell response that would explain the proper resolution of the disease caused by this strain, the DL strain was not able to elicit such response or has mechanisms to prevent this activation. Indeed, DL secretome is rich in peptidases that may deactivate cell pathways crucial for parasite elimination, while is poor in proteins that could activate proinflammatory pathways, favoring parasite infection and persistence.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Transporte Biológico , Humanos , Macrófagos , Estados Unidos
4.
PLoS Negl Trop Dis ; 14(8): e0008509, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804927

RESUMO

Leishmania species are responsible for a broad spectrum of diseases, denominated Leishmaniasis, affecting over 12 million people worldwide. During the last decade, there have been impressive efforts for sequencing the genome of most of the pathogenic Leishmania spp. as well as hundreds of strains, but large-scale proteomics analyses did not follow these achievements and the Leishmania proteome remained mostly uncharacterized. Here, we report a comprehensive comparative study of the proteomes of strains representing L. braziliensis, L. panamensis and L. guyanensis species. Proteins extracted by SDS-mediated lysis were processed following the multi-enzyme digestion-filter aided sample preparation (FASP) procedure and analysed by high accuracy mass spectrometry. "Total Protein Approach" and "Proteomic Ruler" were applied for absolute quantification of proteins. Principal component analysis demonstrated very high reproducibility among biological replicates and a very clear differentiation of the three species. Our dataset comprises near 7000 proteins, representing the most complete Leishmania proteome yet known, and provides a comprehensive quantitative picture of the proteomes of the three species in terms of protein concentration and copy numbers. Analysis of the abundance of proteins from the major energy metabolic processes allow us to highlight remarkably differences among the species and suggest that these parasites depend on distinct energy substrates to obtain ATP. Whereas L. braziliensis relies the more on glycolysis, L. panamensis and L. guyanensis seem to depend mainly on mitochondrial respiration. These results were confirmed by biochemical assays showing opposite profiles for glucose uptake and O2 consumption in these species. In addition, we provide quantitative data about different membrane proteins, transporters, and lipids, all of which contribute for significant species-specific differences and provide rich substrate for explore new molecules for diagnosing purposes. Data are available via ProteomeXchange with identifier PXD017696.


Assuntos
Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Leishmania/genética , Consumo de Oxigênio , Proteômica , Proteínas de Protozoários/genética , Especificidade da Espécie
5.
Free Radic Biol Med ; 146: 392-401, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760093

RESUMO

During their life cycle, trypanosomatids are exposed to stress conditions and adapt their energy and antioxidant metabolism to colonize their hosts. Strigomonas culicis is a monoxenous protist found in invertebrates with an endosymbiotic bacterium that completes essential biosynthetic pathways for the trypanosomatid. Our research group previously generated a wild-type H2O2-resistant (WTR) strain that showed improved mitochondrial metabolism and antioxidant defenses, which led to higher rates of Aedes aegypti infection. Here, we assess the biological contribution of the S. culicis endosymbiont and reactive oxygen species (ROS) resistance to oxidative and energy metabolism processes. Using high-throughput proteomics, several proteins involved in glycolysis and gluconeogenesis, the pentose phosphate pathway and glutathione metabolism were identified. The results suggest that ROS resistance decreases glucose consumption and indicate that the metabolic products from gluconeogenesis are key to supplying the protist with high-energy and reducing intermediates. Our hypothesis was confirmed by biochemical assays showing opposite profiles for glucose uptake and hexokinase and pyruvate kinase activity levels in the WTR and aposymbiotic strains, while the enzyme glucose-6P 1-dehydrogenase was more active in both strains. Regarding the antioxidant system, ascorbate peroxidase has an important role in H2O2 resistance and may be responsible for the high infection rates previously described for A. aegypti. In conclusion, our data indicate that the energy-related and antioxidant metabolic processes of S. culicis are modulated in response to oxidative stress conditions, providing new perspectives on the biology of the trypanosomatid-insect interaction as well as on the possible impact of resistant parasites in accidental human infection.


Assuntos
Antioxidantes , Trypanosomatina , Animais , Glicólise , Humanos , Peróxido de Hidrogênio , Simbiose
6.
Molecules ; 23(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373326

RESUMO

Chagas disease is a neglected tropical disease that is caused by the protozoan Trypanosomacruzi and represents a serious health problem, especially in Latin America. The clinical treatment of Chagas disease is based on two nitroderivatives that present severe side effects and important limitations. In folk medicine, natural products, including sesquiterpenoids, have been employed for the treatment of different parasitic diseases. In this study, the trypanocidal activity of compounds isolated from the Chilean plants Drimys winteri, Podanthus mitiquiand Maytenus boaria on three T. cruzi evolutive forms (epimastigote, trypomastigote and amastigote) was evaluated. Total extracts and seven isolated sesquiterpenoids were assayed on trypomastigotes and epimastigotes. Polygodial (Pgd) from D. winteri, total extract from P. mitiqui (PmTE) and the germacrane erioflorin (Efr) from P. mitiqui were the most bioactive substances. Pgd, Efr and PmTE also presented strong effects on intracellular amastigotes and low host toxicity. Many ultrastructural effects of these substances, including reservosome disruption, cytosolic vacuolization, autophagic phenotype and mitochondrial swelling (in the case of Pgd), were observed. Flow cytometric analysis demonstrated a reduction in mitochondrial membrane potential in treated epimastigotes and an increase in ROS production and high plasma membrane permeability after treatment with Pgd. The promising trypanocidal activity of these natural sesquiterpenoids may be a good starting point for the development of alternative treatmentsforChagas disease.


Assuntos
Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Mitocôndrias/ultraestrutura , Estrutura Molecular , Sesquiterpenos/isolamento & purificação , Tripanossomicidas/isolamento & purificação , Trypanosoma cruzi/ultraestrutura
7.
Free Radic Biol Med ; 113: 255-266, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993269

RESUMO

Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.


Assuntos
Aedes/parasitologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético/genética , Interações Hospedeiro-Parasita , Peróxido de Hidrogênio/farmacologia , Proteínas de Protozoários/genética , Trypanosomatina/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Antioxidantes/metabolismo , Betaproteobacteria/metabolismo , Evolução Biológica , Resistência a Medicamentos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Trato Gastrointestinal/parasitologia , Regulação da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Simbiose/fisiologia , Trypanosomatina/efeitos dos fármacos , Trypanosomatina/genética , Trypanosomatina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...