Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem J ; 477(21): 4281-4294, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33111944

RESUMO

Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.


Assuntos
Proteínas de Ligação ao Cálcio/farmacologia , Proteínas Musculares/farmacologia , Proteolipídeos/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , DNA Complementar/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , Temperatura
2.
Endocrinology ; 160(12): 2825-2836, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580427

RESUMO

The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1ß (ARNT/HIF1ß) plays a key role in maintaining ß-cell function and has been shown to be one of the most downregulated transcription factors in islets from patients with type 2 diabetes. We have shown a role for ARNT/HIF1ß in glucose sensing and insulin secretion in vitro and no defects in in vivo glucose homeostasis. To gain a better understanding of the role of ARNT/HIF1ß in the development of diabetes, we placed control (+/+/Cre) and ß-cell-specific ARNT/HIF1ß knockout (fl/fl/Cre) mice on a high-fat diet (HFD). Unlike the control (+/+/Cre) mice, HFD-fed fl/fl/Cre mice had no impairment in in vivo glucose tolerance. The lack of impairment in HFD-fed fl/fl/Cre mice was partly due to an improved islet glucose-stimulated NADPH/NADP+ ratio and glucose-stimulated insulin secretion. The effects of the HFD-rescued insulin secretion in fl/fl/Cre islets could be reproduced by treating low-fat diet (LFD)-fed fl/fl/Cre islets with the lipid signaling molecule 1-monoacylglcyerol. This suggests that the defects seen in LFD-fed fl/fl/Cre islet insulin secretion involve lipid signaling molecules. Overall, mice lacking ARNT/HIF1ß in ß-cells have altered lipid signaling in vivo and are resistant to an HFD's ability to induce diabetes.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Diabetes Mellitus Experimental/etiologia , Dieta Hiperlipídica , Diglicerídeos , Glucose/metabolismo , Homeostase , Secreção de Insulina , Masculino , Camundongos Knockout , NADP/metabolismo
3.
Am J Physiol Endocrinol Metab ; 316(3): E432-E442, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601702

RESUMO

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump is a major contributor to skeletal muscle Ca2+ homeostasis and metabolic rate. SERCA activity can become adaptively uncoupled by its regulator sarcolipin (SLN) to increase the energy demand of Ca2+ pumping, preventing excessive obesity and glucose intolerance in mice. Several other SERCA regulators bear structural and functional resemblance to SLN, including phospholamban (PLN). Here, we sought to examine whether endogenous levels of skeletal muscle PLN control SERCA Ca2+ pumping efficiency and whole body metabolism. Using PLN-null mice ( Pln-/-), we found that soleus (SOL) muscle's SERCA pumping efficiency (measured as an apparent coupling ratio: Ca2+ uptake/ATP hydrolysis) was unaffected by PLN. Expression of Ca2+-handling proteins within the SOL, including SLN, were comparable between Pln-/- and wild-type (WT) littermates, as were fiber-type characteristics. Not surprisingly then, Pln-/- mice developed a similar degree of diet-induced obesity and glucose intolerance as WT controls when given a "Western" high-fat diet. Lack of an excessively obesogenic phenotype of Pln-/- could not be explained by compensation from skeletal muscle SLN or brown adipose tissue uncoupling protein-1 content. In agreement with several other reports, our study lends support to the notion that PLN serves a functionally distinct role from that of SLN in skeletal muscle physiology.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Intolerância à Glucose/genética , Músculo Esquelético/metabolismo , Obesidade/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Dieta Ocidental , Intolerância à Glucose/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Obesidade/metabolismo , Proteolipídeos/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 700-711, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627383

RESUMO

Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates. There was, however, a significant reduction in the proportion of type I and type IIA fibres in EDL but, surprisingly, not soleus, where these fibre-types predominate. Also unexpectedly, there was no impairment in force generation by EDL, but a significant reduction by soleus. Oxidative phosphorylation and activity of complexes I, I + II, III, and IV in soleus mitochondria was unchanged and therefore could not explain this effect. However, pyruvate dehydrogenase activity was significantly reduced in Lpaatδ-/- soleus and EDL. Analysis of cellular lipids indicated no difference in soleus triacylglycerol, but specific elevations in soleus PA and phosphatidylethanolamine levels, likely due to a compensatory upregulation of Lpaatß and Lpaatε in Lpaatδ-/- mice. An anabolic effect for PA as an activator of skeletal muscle mTOR has been reported, but we found no change in serine 2448 phosphorylation, indicating reduced soleus force generation is unlikely due to the loss of mTOR activation by a specific pool of LPAATδ-derived PA. Our results identify an important role for LPAATδ in soleus and EDL.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/química , Fosforilação Oxidativa , Ácidos Fosfatídicos/análise , Fosfatidiletanolaminas/análise , Complexo Piruvato Desidrogenase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
5.
Obesity (Silver Spring) ; 25(10): 1699-1706, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28857453

RESUMO

OBJECTIVE: Adipose tissue beta-adrenergic signaling is attenuated in obesity and insulin resistance. It has been previously demonstrated that prior exercise training protects against short-term, high-fat diet (HFD)-induced weight gain and glucose intolerance. This study aimed to determine whether prior exercise training results in altered beta-adrenergic and lipolytic signaling in adipose tissue when challenged with a HFD. METHODS: Male C57BL/6J mice underwent 4 weeks of treadmill training (1 h/d, 5 d/wk). Twenty-four hours after the final bout of exercise, mice were fed a HFD (60% kcal lard) for 4 days. RESULTS: Serum fatty acids, beta-adrenergic signaling (phosphorylated ERK, hormone-sensitive lipase, and p38), and perilipin 1 content were greater in epididymal white adipose tissue (eWAT) from previously trained mice. These changes were not evident in eWAT from trained mice prior to the HFD and were not secondary to alterations in insulin responsiveness or catecholamine concentrations. CL 316,243-mediated increases in hormone-sensitive lipase phosphorylation and fatty acid accumulation in the media were greater in adipose tissue explants from previously trained mice fed a HFD. CONCLUSIONS: These findings suggest that previous training increases adipose tissue beta-adrenergic responsiveness to a short-term HFD. This may help to explain the protective effect of prior exercise training against the deleterious effects of a HFD.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Condicionamento Físico Animal/métodos , Receptores Adrenérgicos beta/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
J Lipid Res ; 58(10): 2037-2050, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28814640

RESUMO

Acylglycerophosphate acyltransferase 4 (AGPAT4)/lysophosphatidic acid acyltransferase delta catalyzes the formation of phosphatidic acid (PA), a precursor of triacyl-glycerol (TAG). We investigated the effect of Agpat4 gene ablation on white adipose tissue (WAT) after finding consistent expression across depots. Epididymal WAT mass was 40% larger in male Agpat4-/- mice than wild-type littermates, but unchanged in perirenal, retroperitoneal, and inguinal WAT and subscapular brown adipose tissue. Metabolic changes were identified in epididymal WAT that were not evident in perirenal WAT, which was analyzed for comparison. The total epididymal TAG content doubled, increasing adipocyte cell size without changing markers of differentiation. Enzymes involved in de novo lipogenesis and complex lipid synthesis downstream of phosphatidic acid production were also unchanged. However, total epididymal TAG hydrolase activity was reduced, and there were significant decreases in total ATGL and reduced phosphorylation of hormone-sensitive lipase at the S563 and S660 PKA-activation sites. Analysis of Agpats 1, 2, 3, and 5, as well as Gpats 1, 2, 3, and 4, demonstrated compensatory upregulation in perirenal WAT that did not occur in epididymal WAT. Our findings therefore indicate depot-specific differences in the redundancy of Agpat4 and highlight the molecular and metabolic heterogeneity of individual visceral depots.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Tecido Adiposo Branco/metabolismo , Epididimo/metabolismo , Deleção de Genes , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Animais , Tamanho Celular , Epididimo/citologia , Regulação da Expressão Gênica/genética , Lipogênese/genética , Lipólise/genética , Masculino , Camundongos , Tamanho do Órgão , Ácidos Fosfatídicos/metabolismo , Triglicerídeos/metabolismo
7.
Am J Physiol Cell Physiol ; 313(2): C154-C161, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28592414

RESUMO

Overexpression of sarcolipin (SLN), a regulator of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), stimulates calcineurin signaling to enhance skeletal muscle oxidative capacity. Some studies have shown that calcineurin may also control skeletal muscle mass and remodeling in response to functional overload and unload stimuli by increasing myofiber size and the proportion of slow fibers. To examine whether SLN might mediate these adaptive responses, we performed soleus and gastrocnemius tenotomy in wild-type (WT) and Sln-null (Sln-/-) mice and examined the overloaded plantaris and unloaded/tenotomized soleus muscles. In the WT overloaded plantaris, we observed ectopic expression of SLN, myofiber hypertrophy, increased fiber number, and a fast-to-slow fiber type shift, which were associated with increased calcineurin signaling (NFAT dephosphorylation and increased stabilin-2 protein content) and reduced SERCA activity. In the WT tenotomized soleus, we observed a 14-fold increase in SLN protein, myofiber atrophy, decreased fiber number, and a slow-to-fast fiber type shift, which were also associated with increased calcineurin signaling and reduced SERCA activity. Genetic deletion of Sln altered these physiological outcomes, with the overloaded plantaris myofibers failing to grow in size and number, and transition towards the slow fiber type, while the unloaded soleus muscles exhibited greater reductions in fiber size and number, and an accelerated slow-to-fast fiber type shift. In both the Sln-/- overloaded and unloaded muscles, these findings were associated with elevated SERCA activity and blunted calcineurin signaling. Thus, SLN plays an important role in adaptive muscle remodeling potentially through calcineurin stimulation, which could have important implications for other muscle diseases and conditions.


Assuntos
Calcineurina/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteolipídeos/genética , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/cirurgia , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tenotomia
8.
PLoS One ; 12(3): e0173708, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278204

RESUMO

Sarcolipin (SLN) and phospholamban (PLN) are two small proteins that regulate the sarco(endo)plasmic reticulum Ca2+-ATPase pumps. In a recent study, we discovered that Pln overexpression (PlnOE) in slow-twitch type I skeletal muscle fibers drastically impaired SERCA function and caused a centronuclear myopathy-like phenotype, severe muscle atrophy and weakness, and an 8 to 9-fold upregulation of SLN protein in the soleus muscles. Here, we sought to determine the physiological role of SLN upregulation, and based on its role as a SERCA inhibitor, we hypothesized that it would represent a maladaptive response that contributes to the SERCA dysfunction and the overall myopathy observed in the PlnOE mice. To this end, we crossed Sln-null (SlnKO) mice with PlnOE mice to generate a PlnOE/SlnKO mouse colony and assessed SERCA function, CNM pathology, in vitro contractility, muscle mass, calcineurin signaling, daily activity and food intake, and proteolytic enzyme activity. Our results indicate that genetic deletion of Sln did not improve SERCA function nor rescue the CNM phenotype, but did result in exacerbated muscle atrophy and weakness, due to a failure to induce type II fiber compensatory hypertrophy and a reduction in total myofiber count. Mechanistically, our findings suggest that impaired calcineurin activation and resultant decreased expression of stabilin-2, and/or impaired autophagic signaling could be involved. Future studies should examine these possibilities. In conclusion, our study demonstrates the importance of SLN upregulation in combating muscle myopathy in the PlnOE mice, and since SLN is upregulated across several myopathies, our findings may reveal SLN as a novel and universal therapeutic target.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteolipídeos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Transporte de Íons , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Retículo Sarcoplasmático/metabolismo , Deleção de Sequência
9.
J Appl Physiol (1985) ; 122(5): 1276-1283, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183820

RESUMO

In mice, transgenic manipulation of Ca2+-handling proteins is sufficient to alter the metabolic phenotype of muscle. We have previously shown that ablation of sarcolipin (SLN), a regulatory protein and uncoupler of sarco(endo)plasmic reticulum Ca2+-ATPases, leads to excessive diet-induced obesity and glucose intolerance in mice. However, it is unclear how loss of SLN per se affects muscle oxidative capacity and the ability of mitochondria to adapt to physiological stimuli, such as exercise training or calorie overload. To address this question, Sln-/- and wild-type (WT) littermates were given access to voluntary running wheels or underwent a treadmill training protocol for 8 wk. Furthermore, a separate group of mice were given a high-fat diet (42% kcal from fat for 8 wk) to determine whether the excessively obese phenotype of Sln-/- mice is associated with altered oxidative capacity. While voluntary running was insufficient to elicit mitochondrial adaptations, treadmill-trained mice showed significant increases (P < 0.05) in the maximal activities of succinate dehydrogenase (+11%), citrate synthase (+12%), cytochrome oxidase (COX: +17%), along with increased protein expression of cytochrome c (+34%) and COX IV (+28%), which were irrespective of SLN expression. Lastly, no changes in the activities of mitochondrial marker enzymes existed with high-fat feeding, regardless of genotype. Together, these findings indicate that SLN is not required for the regulation of oxidative capacity in response to physiological stress, namely exercise or caloric surfeit.NEW & NOTEWORTHY Sarcolipin (SLN) has gained considerable attention for its uncoupling role of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). Because of SLN's ability to alter both cellular energy use and cytosolic [Ca2+], the potential exists for a regulatory role of mitochondrial biogenesis. Herein, we show skeletal muscle oxidative capacity to be unaltered in mice lacking SLN following exercise training or high-fat feeding. Our results contrast with published studies of SLN-overexpressing mice, possibly owing to supraphysiological uncoupling of SERCA.


Assuntos
Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Condicionamento Físico Animal/fisiologia , Proteolipídeos/metabolismo , Animais , Cálcio/metabolismo , Dieta Hiperlipídica/métodos , Ingestão de Energia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
10.
Brain Behav ; 6(6): e00470, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27134770

RESUMO

AIMS: Phospholamban (PLN) and sarcolipin (SLN) are small inhibitory proteins that regulate the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump. Previous work from our laboratory revealed that in the soleus and gluteus minimus muscles of mice overexpressing PLN (Pln (OE)), SERCA function was impaired, dynamin 2 (3-5 fold) and SLN (7-9 fold) were upregulated, and features of human centronuclear myopathy (CNM) were observed. Here, we performed structural and functional experiments to evaluate whether the diaphragm muscles of the Pln (OE) mouse would exhibit CNM pathology and muscle weakness. METHODS: Diaphragm muscles from Pln (OE) and WT mice were subjected to histological/histochemical/immunofluorescent staining, Ca(2+)-ATPase and Ca(2+) uptake assays, Western blotting, and in vitro electrical stimulation. RESULTS: Our results demonstrate that PLN overexpression reduced SERCA's apparent affinity for Ca(2+) but did not reduce maximal SERCA activity or rates of Ca(2+) uptake. SLN was upregulated 2.5-fold, whereas no changes in dynamin 2 expression were found. With respect to CNM, we did not observe type I fiber predominance, central nuclei, or central aggregation of oxidative activity in diaphragm, although type I fiber hypotrophy was present. Furthermore, in vitro contractility assessment of Pln (OE) diaphragm strips revealed no reductions in force-generating capacity, maximal rates of relaxation or force development, but did indicate that ½ relaxation time was prolonged. CONCLUSIONS: Therefore, the effects of PLN overexpression on skeletal muscle phenotype differ between diaphragm and the postural soleus and gluteus minimus muscles. Our findings here point to differences in SLN expression and type I fiber distribution as potential contributing factors.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Diafragma/metabolismo , Contração Muscular/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/fisiopatologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo
11.
Diabetologia ; 58(12): 2832-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409461

RESUMO

AIMS/HYPOTHESIS: It has been suggested that the transcription factor ARNT/HIF1ß is critical for maintaining in vivo glucose homeostasis and pancreatic beta cell glucose-stimulated insulin secretion (GSIS). Our goal was to gain more insights into the metabolic defects seen after the loss of ARNT/HIF1ß in beta cells. METHODS: The in vivo and in vitro consequences of the loss of ARNT/HIF1ß were investigated in beta cell specific Arnt/Hif1ß knockout mice (ß-Arnt (fl/fl/Cre) mice). RESULTS: The only in vivo defects found in ß-Arnt (fl/fl/Cre) mice were significant increases in the respiratory exchange ratio and in vivo carbohydrate oxidation, and a decrease in lipid oxidation. The mitochondrial oxygen consumption rate was unaltered in mouse ß-Arnt (fl/fl/Cre) islets upon glucose stimulation. ß-Arnt (fl/fl/Cre) islets had an impairment in the glucose-stimulated increase in Ca(2+) signalling and a reduced insulin secretory response to glucose in the presence of KCl and diazoxide. The glucose-stimulated increase in the NADPH/NADP(+) ratio was reduced in ß-Arnt (fl/fl/Cre) islets. The reduced GSIS and NADPH/NADP(+) levels in ß-Arnt (fl/fl/Cre) islets could be rescued by treatment with membrane-permeable tricarboxylic acid intermediates. Small interfering (si)RNA mediated knockdown of ARNT/HIF1ß in human islets also inhibited GSIS. These results suggest that the regulation of GSIS by the KATP channel-dependent and -independent pathways is affected by the loss of ARNT/HIF1ß in islets. CONCLUSIONS/INTERPRETATION: This study provides three new insights into the role of ARNT/HIF1ß in beta cells: (1) ARNT/HIF1ß deletion in mice impairs GSIS ex vivo; (2) ß-Arnt (fl/fl/Cre) mice have an increased respiratory exchange ratio; and (3) ARNT/HIF1ß is required for GSIS in human islets.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Glucose/metabolismo , Homeostase/genética , Células Secretoras de Insulina/enzimologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Teste de Tolerância a Glucose , Hormônio do Crescimento Humano/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , NADP/metabolismo , Consumo de Oxigênio , Troca Gasosa Pulmonar
12.
Physiol Rep ; 3(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26400985

RESUMO

Several rodent models of obesity have been shown to develop excessive adiposity only when voluntary cage ambulation is restricted. We have previously shown that mice lacking the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump regulatory protein sarcolipin (Sln(-/-)), an uncoupler of Ca(2+) uptake, develop excessive diet-induced obesity under standard housing conditions. However, it is unclear whether this phenotype is due, in part, to the sedentary housing environment in which these animals are kept. To address this, we allowed wild-type and Sln(-/-) animals ad libitum access to voluntary wheel running while consuming a standard chow or high-fat diet for 8 weeks. During this period, wheel revolutions were monitored along with weekly mass gain. Postdiet glucose tolerance and visceral adiposity were also taken. The volume of wheel running completed was similar between genotype, regardless of diet. Although voluntary activity reduced mass gain relative to sedentary controls within each diet (P < 0.05), visceral adiposity was surprisingly unaltered with activity. However, Sln(-/-) mice developed excessive obesity (P < 0.05) and glucose intolerance (P < 0.05) with high-fat feeding relative to wild-type controls. These findings indicate that the excessive diet-induced obese phenotype previously observed in Sln(-/-) mice is not the result of severely restricted daily ambulation, but in fact the inability to recruit uncoupling of the Ca(2+)-ATPase pump.

13.
Can J Physiol Pharmacol ; 93(11): 945-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26406298

RESUMO

This study examined the effects of a delay in post-ovariectomy replacement of 17ß-estradiol (estrogen) on the post-exercise proliferation of muscle satellite cells. Nine-week-old, ovariectomized, female Sprague-Dawley rats (n = 64) were distributed among 8 groups based on estrogen status (0.25 mg estrogen pellet or sham), exercise status (90 min run at 17 m·min(-1) and a grade of -13.5° or unexercised), and estrogen replacement ("proximal", estrogen replacement within 2 weeks; or "delayed", estrogen replacement at 11 weeks following ovariectomy). Significant increases in satellite cells were found in the soleus and white gastrocnemius muscle (immunofluorescent colocalization of nuclei with Pax7) 72 h following eccentric exercise (p < 0.05) in all exercised groups. Proximal E2 replacement resulted in a further augmentation of muscle satellite cells in exercised rats (p < 0.05) relative to the delayed estrogen replacement group. Expression of PI3K was unaltered and phosphorylation of Akt relative to total Akt increased following estrogen supplementation and exercise. Exercise alone did not alter the expression levels of Akt. An 11 week delay in post-ovariectomy estrogen replacement negated the augmenting influence seen with proximal (2 week delay) post-ovariectomy estrogen replacement on post-exercise muscle satellite cell proliferation. This effect appears to be independent of the PI3K-Akt signaling pathway.


Assuntos
Proliferação de Células/fisiologia , Terapia de Reposição de Estrogênios/tendências , Estrogênios/administração & dosagem , Ovariectomia/efeitos adversos , Condicionamento Físico Animal/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Terapia de Reposição de Estrogênios/métodos , Estrogênios/sangue , Feminino , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Ovariectomia/tendências , Condicionamento Físico Animal/métodos , Ratos , Ratos Sprague-Dawley , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Fatores de Tempo
14.
J Membr Biol ; 248(6): 1089-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26193810

RESUMO

In a previous study, we reported lower sarcoplasmic reticulum (SR) Ca(2+) pump ionophore ratios in rat soleus compared to red and white gastrocnemius (RG, WG) muscles which may be indicative of greater SR Ca(2+) permeability in soleus. Here we assessed the lipid composition of the SR membranes obtained from these muscles to determine if SR docosahexaenoic acid (DHA) content and fatty acid unsaturation could help to explain the previously observed differences in SR Ca(2+) permeability. Since we have shown previously that sarcolipin may also influence SR Ca(2+) permeability, we also examined the levels of sarcolipin in rat muscle. We found that SR membrane DHA content was significantly higher in soleus (5.3 ± 0.2 %) compared to RG (4.2 ± 0.2 %) and WG (3.3 ± 0.2 %). Likewise, total SR membrane unsaturation and unsaturation index (UI) were significantly higher in soleus (% unsaturation: 59.1 ± 2.4; UI: 362.9 ± 0.8) compared to RG (% unsaturation: 55.3 ± 1.0; UI: 320.9 ± 2.5) and WG (% unsaturation: 52.6 ± 1.1; UI: 310. ± 2.2). Sarcolipin protein was 17-fold more abundant in rat soleus compared to RG and was not detected in WG; however, comparisons between soleus, RG, and WG in sarcolipin-null mice revealed that, in the absence of sarcolipin, ionophore ratios are still lowest in soleus and highest in WG. Overall, our results suggest that SR membrane DHA content and unsaturation, and, in part, sarcolipin expression may contribute to SR Ca(2+) permeability and, in turn, may have implications in muscle-based metabolism and diet-induced obesity.


Assuntos
Ácidos Graxos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfolipídeos/metabolismo , Proteolipídeos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , ATPases Transportadoras de Cálcio/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ionóforos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteolipídeos/deficiência , Proteolipídeos/genética , Ratos
15.
Nat Commun ; 6: 7415, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077864

RESUMO

Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Oncogênicas/genética , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Linhagem Celular , Sobrevivência Celular , Diabetes Mellitus/genética , Dieta Hiperlipídica , Glucose/metabolismo , Glicólise/genética , Homeostase/genética , Immunoblotting , Resistência à Insulina/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Obesidade/genética , Estresse Oxidativo , Consumo de Oxigênio , Proteína Desglicase DJ-1
16.
Dis Model Mech ; 8(8): 999-1009, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26035394

RESUMO

Centronuclear myopathy (CNM) is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (Pln(OE)), a well-known inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs), in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in Pln(OE) muscles, with marked reductions in rates of Ca(2+) uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca(2+). However, our most significant discovery was that the soleus and gluteus minimus muscles from the Pln(OE) mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca(2+)-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available Pln(OE) mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Adolescente , Adulto , Animais , Cálcio/farmacologia , Dinamina II/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Músculos/enzimologia , Músculos/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Distrofia Muscular Animal/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Proteólise/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
17.
Chem Phys Lipids ; 187: 56-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25772907

RESUMO

Docosahexaenoic acid (DHA) can reduce the efficiency and increase the energy consumption of Na(+)/K(+)-ATPase pump and mitochondrial electron transport chain by promoting Na(+) and H(+) membrane permeability, respectively. In skeletal muscle, the sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) pumps are major contributors to resting metabolic rate. Whether DHA can affect SERCA efficiency remains unknown. Here, we examined the hypothesis that dietary supplementation with DHA would reduce Ca(2+) transport efficiency of the SERCA pumps in skeletal muscle. Total lipids were extracted from enriched sarcoplasmic reticulum (SR) membranes that were isolated from red vastus lateralis skeletal muscles of rats that were either fed a standard chow diet supplemented with soybean oil or supplemented with DHA for 8 weeks. The fatty acid composition of total SR membrane lipids and the major phospholipid species were determined using electrospray ionization mass spectrometry (ESI-MS). After 8 weeks of DHA supplementation, total SR DHA content was significantly elevated (control, 4.1 ± 1.0% vs. DHA, 9.9 ± 1.7%; weight percent of total fatty acids) while total arachidonic acid was reduced (control, 13.5 ± 0.4% vs. DHA-fed, 9.4 ± 0.2). Similar changes in these fatty acids were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, altogether indicating successful incorporation of DHA into the SR membranes post-diet. As hypothesized, DHA supplementation reduced SERCA Ca(2+) transport efficiency (control, 0.018 ± 0.0002 vs. DHA-fed, 0.014 ± 0.0009) possibly through enhanced SR Ca(2+) permeability (ionophore ratio: control, 2.8 ± 0.2 vs. DHA-fed, 2.2 ± 0.3). Collectively, our results suggest that DHA may promote skeletal muscle-based metabolism and thermogenesis through its influence on SERCA.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos
18.
Exerc Sport Sci Rev ; 42(3): 136-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24949847

RESUMO

The sarco(endo)plasmic reticulum Ca-ATPase (SERCA) transports Ca into the sarcoplasmic reticulum lumen and contributes significantly to skeletal muscle metabolic rate. Sarcolipin (SLN) has been shown recently to uncouple Ca transport from adenosine triphosphate hydrolysis by SERCA. We have hypothesized that SLN provides a novel mechanism of adaptive thermogenesis within skeletal muscle and protects against diet-induced obesity.


Assuntos
Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Basal , Transporte Biológico , Cálcio/metabolismo , Humanos , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 1
19.
Can J Physiol Pharmacol ; 91(10): 823-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24303535

RESUMO

We examined the influence of estrogen receptor-alpha (ERα) activation on estrogen-mediated regulation of heat shock proteins 70 (Hsp70) and 27 (Hsp27) in soleus. Ovariectomized rats received estrogen (EST), an ERα agonist (propyl pyrazole triol, PPT), both (EST+PPT), or a sham, and they served as either unexercised controls or were subjected to exercise by having to run downhill (17 m/min, -13.5° grade) for 90 min. At 72 h postexercise, soleus muscles were removed and either immunohistochemically stained for Hsp70 and myosin heavy chain or homogenized for Western blotting for Hsp70 and Hsp27. Elevated (p < 0.05) basal Hsp70 in both type I and II fibres in the unexercised EST, PPT, and EST+PPT groups relative to unexercised sham animals was noted. Compared with Hsp70 levels in the unexercised animals, that in exercised animals was elevated (p < 0.05) in both sham and PPT groups but not in EST and EST+PPT groups. Western blot determined that Hsp27 levels were not significantly different between groups. Hence, the ability of estrogen to augment resting type I and type II muscle fibre Hsp70 content is primarily mediated via muscle ERα. However, the blunted Hsp70 response following damaging exercise in estrogen-supplemented animals does not appear to be fully accounted for by ERα-mediated effects.


Assuntos
Receptor alfa de Estrogênio/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Esforço Físico , Pirazóis/farmacologia , Animais , Western Blotting , Receptor alfa de Estrogênio/metabolismo , Feminino , Imunofluorescência , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Ovariectomia , Fenóis , Ratos , Ratos Sprague-Dawley , Corrida , Fatores de Tempo
20.
PLoS One ; 8(12): e84304, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358354

RESUMO

Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) by reducing their apparent affinity for Ca(2+). A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca(2+) affinity of SERCA (K Ca, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (µmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Adolescente , Adulto , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Ativação Enzimática , Expressão Gênica , Humanos , Isoenzimas , Masculino , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/genética , Cadeias Pesadas de Miosina/metabolismo , Ligação Proteica , Proteolipídeos/genética , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...