Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 180: 108194, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708814

RESUMO

BACKGROUND: Organophosphate esters (OPEs), used as flame retardants and plasticizers, are chemicals of concern for maternal and infant health. Prior studies examining temporal trends and predictors of OPE exposure are primarily limited by small sample sizes. OBJECTIVES: Characterize temporal trends and predictors of OPE exposure biomarkers. METHODS: We determined urinary concentrations of eight biomarkers of OPE exposure at three timepoints during pregnancy for participants in the LIFECODES Fetal Growth Study (n = 900), a nested case-cohort recruited between 2007 and 2018. We examined biomarker concentrations, their variability during pregnancy, and temporal trends over the study period. In addition, we identified sociodemographic and pregnancy characteristics associated with biomarker concentrations. Analyses were conducted using both the within-subject pregnancy geometric means and biomarker concentrations measured at individual study visits. RESULTS: Five OPE biomarkers were detected in at least 60% of the study participants. Biomarkers were not strongly correlated with one another and intraclass correlation coefficients, measuring within-subject variability during pregnancy, ranged from 0.27 to 0.51. Biomarkers exhibited varying temporal trends across study years. For example, bis(1-chloro-2-propyl) phosphate (BCIPP) increased monotonically, whereas bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), displayed non-monotonic trends with concentrations that peaked between 2011 and 2014. We observed associations between sociodemographic characteristics and OPE biomarkers. In general, concentrations of most OPE biomarkers were higher among participants from racial and ethnic minority populations, participants who were younger, had higher pre-pregnancy body mass index (BMI), and less than a college degree. We observed consistent results using either averaged or visit-specific biomarker concentrations. SIGNIFICANCE: We observed widespread exposure to several OPEs and OPE biomarkers displayed varying temporal trends in pregnant people from 2007 to 2018. Concentrations of most OPE biomarkers varied according to sociodemographic factors, suggesting higher burdens of exposure among participants with higher pre-pregnancy BMI, those belonging to racial and ethnic minority populations, and lower educational attainment.


Assuntos
Retardadores de Chama , Gravidez , Feminino , Humanos , Retardadores de Chama/análise , Plastificantes/análise , Etnicidade , Grupos Minoritários , Ésteres , Organofosfatos , Fosfatos , Biomarcadores
2.
Environ Int ; 174: 107898, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37001215

RESUMO

BACKGROUND: Exposure to many phthalates and phenols is declining as replacements are introduced. There is little information on temporal trends or predictors of exposure to these newer compounds, such as phthalate replacements, especially among pregnant populations. OBJECTIVE: Examine temporal trends and predictors of exposure to phthalates, phthalate replacements, and phenols using single- and multi-pollutant approaches. METHODS: We analyzed data from 900 singleton pregnancies in the LIFECODES Fetal Growth Study, a nested case-cohort with recruitment from 2007 to 2018. We measured and averaged concentrations of 12 phthalate metabolites, four phthalate replacement metabolites, and 12 phenols in urine at three timepoints during pregnancy. We visualized and analyzed temporal trends and predictors of biomarker concentrations. To examine chemical mixtures, we derived clusters of individuals with shared exposure profiles using a finite mixture model and examined temporal trends and predictors of cluster assignment. RESULTS: Exposure to phthalates and most phenols declined across the study period, while exposure to phthalate replacements (i.e., di(isononyl) cyclohexane-1,2-dicarboxylic acid, diisononyl ester [DINCH] and di-2-ethylhexyl terephthalate [DEHTP]) and bisphenol S (BPS) increased. For example, the sum of DEHTP biomarkers increased multiple orders of magnitude, with an average concentration of 0.92 ng/mL from 2007 to 2008 and 61.9 ng/mL in 2017-2018. Biomarkers of most chemical exposures varied across sociodemographic characteristics, with the highest concentrations observed in non-Hispanic Black or Hispanic participants relative to non-Hispanic White participants. We identified five clusters with shared exposure profiles and observed temporal trends in cluster membership. For example, at the end of the study period, a cluster characterized by high exposure to phthalate replacements was the most prevalent. SIGNIFICANCE: In a large and well-characterized pregnancy cohort, we observed exposure to phthalate replacements and BPS increased over time while exposure to phthalates and other phenols decreased. Our results highlight the changing nature of exposure to consumer product chemical mixtures.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Fenol , Fenóis , Biomarcadores , Desenvolvimento Fetal , Exposição Ambiental/análise
3.
Environ Health ; 20(1): 68, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112176

RESUMO

BACKGROUND: While fetal growth is a tightly regulated process, it is sensitive to environmental exposures that occur during pregnancy. Many commonly used consumer products contain chemicals that can disturb processes underlying fetal growth. However, mixtures of these chemicals have been minimally examined. We investigated associations between prenatal exposure to 33 consumer product chemicals (nine organophosphate ester flame retardant [OPE] metabolites, 12 phthalate metabolites, and 12 phenols) and the odds of small- or large-for-gestational age (SGA and LGA) births. METHODS: This case-control study was comprised of SGA (N = 31), LGA (N = 28), and appropriate for gestational age control (N = 31) births selected from the larger LIFECODES cohort. Biomarkers of exposure to consumer product chemicals were quantified in maternal urine collected from up to three study visits during pregnancy. In a single-pollutant approach, odds ratios (OR) and 95% confidence intervals (CI) of SGA and LGA associated with an interquartile range (IQR)-increase in exposure biomarkers were estimated using multinomial logistic regression. In a multi-pollutant approach, quantile g-computation was used to jointly estimate the OR (95% CI) of SGA and LGA per simultaneous one quartile-change in all biomarkers belonging to each chemical class. RESULTS: Among the 33 biomarkers analyzed, 20 were detected in at least 50% of the participants. After adjusting for potential confounders, we observed reduced odds of LGA in association with higher urinary concentrations of several exposure biomarkers. For example, an IQR-increase in the OPE metabolite, diphenyl phosphate, was associated with lower odds of LGA (OR: 0.40 [95% CI: 0.18, 0.87]). Using quantile g-computation, we estimated lower odds of an LGA birth for higher OPE metabolite concentrations (OR: 0.49 [95% CI: 0.27, 0.89]) and phthalate metabolite concentrations (OR: 0.23 [95% CI: 0.07, 0.73]). Associations between consumer product chemicals and SGA were largely null. CONCLUSIONS: Joint exposure to OPEs and phthalates was associated with lower odds of delivering LGA. Associations with LGA could indicate a specific impact of these exposures on the high end of the birth weight spectrum. Future work to understand this nuance in the associations between consumer product chemical mixtures and fetal growth is warranted.


Assuntos
Peso ao Nascer , Qualidade de Produtos para o Consumidor , Poluentes Ambientais , Exposição Materna , Adulto , Estudos de Casos e Controles , Ésteres , Feminino , Retardadores de Chama , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Troca Materno-Fetal , Organofosfatos , Fenóis , Ácidos Ftálicos , Gravidez
4.
Toxicol Res (Camb) ; 5(6): 1503-1511, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29354260

RESUMO

Globally, millions of people are exposed to elevated levels of inorganic arsenic (iAs) via drinking water. Exposure to iAs is associated with a wide range of negative health outcomes, including cancers, skin lesions, neurological impairment, cardiovascular diseases, and an increased susceptibility to infection. Among those exposed to iAs, the developing fetus and young children represent particularly sensitive subpopulations. Specifically, it has been noted in animal models and human populations that prenatal and early life iAs exposures are associated with diseases occurring during childhood and later in life. Recent epidemiologic and toxicologic studies have also demonstrated that epigenetic alterations may play a key mechanistic role underlying many of the iAs-associated health outcomes, including the carcinogenic and immunologic effects of exposure. This review summarizes some of the key studies related to prenatal and early life iAs exposure and highlights the complexities in isolating the precise developmental windows of exposure associated with these health outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...