Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(2): 1499-1515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507967

RESUMO

BACKGROUND: Rice crop is damaged extremely by abiotic stress world-wide. The best approach to enhance drought tolerance in rice varieties is to identify and introgress yield QTLs with major effects. The Association mapping approach helps in the identification of genomic regions governing physiological, yield and yield attributes under moisture and heat stress conditions in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. METHODS AND RESULTS: The association mapping panel of 110 rice germplasm lines exhibited significant variation for all the traits in both irrigated and moisture stress conditions. The extent of yield reduction ranged to 83% during rabi, 2018-19, 53% in rabi, 2019-20 and 68% in pooled analysis. The genotypes Badami, Badshabhog, Pankaj, Varalu, Vasundhara, Vivekdhan, Krishna and Minghui63 exhibited drought tolerance with least yield penalty under moisture stress conditions. The genotypes Konark, MTU3626, NLR33671, PR118 and Triguna exhibited minimal reduction in heat stress tolerance traits. Association mapping of germplasm using 37808 SNP markers detected a total of 10 major MTA (Marker-trait association) clusters distributed on chromosomes 1, 3, 4 and 11 through mixed linear model (MLM) governing multiple traits from individual data analysis which are consistent across the years and situations. The pooled data generated a total of five MTA clusters located on chromosome 6. In addition, several novel unique MTAs were also identified. Heat stress analysis generated a total of 23 MTAs distributed on chromosomes 1, 5, 6 and 11. Candidate gene analysis detected a total of 53 and 38 genes under individual and pooled data analysis for various yield and yield attributes under control and moisture stress conditions, respectively and a total of 11 candidate genes in heat stress Conditions. CONCLUSION: The major and novel MTAs identified in the present investigation for various drought and heat tolerant traits can be utilized for breeding climate-resilient rice varieties. The candidate genes predicted for key MTAs are of great value to deploy into the rice breeding after functional characterization.


Assuntos
Oryza , Mapeamento Cromossômico/métodos , Oryza/genética , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Fenótipo , Genômica
2.
Mol Biol Rep ; 47(11): 8615-8627, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33098552

RESUMO

Rice (Oryza sativa L.) yield enhancement is one of the prime objectives of plant breeders. Elucidation of the inheritance of grain weight, a key yield component trait, is of paramount importance for raising the yield thresholds in rice. In the present investigation, we employed Next-Generation Sequencing based QTL-seq approach to identify major genomic regions associated with grain weight using mapping populations derived from a cross between BPT5204 and MTU3626. QTL-seq analysis identified three grain weight quantitative trait loci (QTL) viz., qGW1 (35-40 Mb), qGW7 (10-18 Mb), and qGW8 (2-5 Mb) on chromosomes 1, 7 and 8, respectively and all are found to be novel. Further, qGW8 was confirmed through conventional QTL mapping in F2, F3 and BC1F2 populations and found to explain the phenotypic variance of 17.88%, 16.70% and 15.00%, respectively, indicating a major QTL for grain weight. Based on previous reports, two candidate genes in the qGW8 QTL were predicted i.e., LOC_Os08g01490 (Cytochrome P450), and LOC_Os08g01680 (WD domain, G-beta repeat domain containing protein) and through in silico analysis they were found to be highly expressed in reproductive organs during different stages of grain development. Here, we have demonstrated that QTL-seq is one of the rapid approaches to uncover novel QTLs controlling complex traits. The candidate genes identified in the present study undoubtedly enhance our understanding of the mechanism and inheritance of the grain weight. These candidate genes can be exploited for yield enhancement after confirmation through complementary studies.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Cromossomos de Plantas/genética , DNA de Plantas/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...