Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 216(2): 108086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527711

RESUMO

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.


Assuntos
Proteínas de Ligação às Penicilinas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Cristalografia por Raios X , Cinética , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , beta-Lactamas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Conformação Proteica , Modelos Moleculares
2.
Nat Commun ; 13(1): 5019, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028506

RESUMO

Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-pointing threonines and tyrosines, which may organize water molecules into an ice-like pattern. Here we report that mutating some of these residues in a central segment of P. borealis INP, expressed in Escherichia coli, decreases ice nucleation activity more than the section's deletion. Insertion of a bulky domain has the same effect, indicating that the continuity of the water-organizing repeats is critical for optimal activity. The ~10 C-terminal coils differ from the other 55 coils in being more basic and lacking water-organizing motifs; deletion of this region eliminates INP activity. We show through sequence modifications how arrays of conserved motifs form the large ice-nucleating surface required for potency.


Assuntos
Proteínas da Membrana Bacteriana Externa , Água , Proteínas da Membrana Bacteriana Externa/química , Escherichia coli , Pseudomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...