Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10361-10367, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34882419

RESUMO

Whereas capillarity controls fluid dynamics at submillimeter scale and elasticity determines the mechanics of rigid solids, their coupling governs elastocapillary deformations on soft solids. Here, we directly probed the deformations on soft substrates induced by sessile nanodroplets. The wetting ridge created around the contact line and the dimple formed underneath the nanodroplet were imaged with a high spatial resolution using atomic force microscopy. The ridge height nonmonotonically depends on the substrate stiffness, and the dimple depth nonlinearly depends on the droplet size. The capillarity of the substrate overcomes the elasticity of the substrate in dominating the deformations when the elastocapillary length is approximately larger than the droplet contact radius, showing an experimental observation of the elasticity-to-capillarity transition. This study provides an experimental approach to investigate nanoscale elastocapillarity, and the insights have the potential to kick-off future work on the fundamentals of solid mechanics.


Assuntos
Ação Capilar , Elasticidade , Microscopia de Força Atômica/métodos
2.
Adv Sci (Weinh) ; 8(16): e2101331, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174164

RESUMO

High-resolution fluid dispensing techniques play a critical role in modern digital microfluidics, micro-biosensing, and advanced fabrication. Though most of existing dispensers can achieve precise and high-throughput fluid dispensing, they suffer from some inherent problems, such as specially fabricated dispensing micronozzles/microtips, large operating systems, low volume tunability, and poor performance for low surface tension liquids and liquids containing solid/liquid additives. Herein, the authors propose a facile, low-frequency micro dispensing technique based on the Rayleigh-Plateau instability of singular liquid jets, which are stimulated by the air cavity collapse arising in the impact of microliter drops on non-wetting surfaces. This novel dispensing strategy is capable to produce single microdrops of low-viscosity liquids with a tunable volume from picoliters to nanoliters, and the operational surface tension range covers most laboratory solvents. The dispensing function is implemented without using small-dimension nozzles/tips and enables handling diverse complex liquids. Moreover, the rather simple operating platform allows the integration of the whole dispensing function into a handy portable device with a low cost. Employing this microdispensing technique, the authors have controlled microchemical reactions, handled liquid samples in biological analysis, and fabricated smart materials and devices. The authors envision that this rational microdrop generator would find applications in various research areas.

3.
ACS Appl Mater Interfaces ; 13(5): 6897-6905, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523651

RESUMO

Solid surfaces with excellent nonwetting ability have drawn significant interest from interfacial scientists and engineers. While much effort was devoted to investigating macroscopic wetting phenomena on nonwetting surfaces, the otherwise microscopic wetting has received less attention, and the surface/interface properties at the microscopic scale are not well resolved and correlated with the macroscopic wetting behavior. Herein, we first characterize the nanoscopic morphology and effective stiffness of liquid-air interfaces inside nanopores (nanomenisci) on diverse nonwetting nanoporous surfaces underneath water droplets using atomic force microscopy. Detailed three-dimensional imaging of the droplet-surface contact region reveals that water only slightly penetrates into the nanopores, allowing for quantitative prediction of the macroscopic contact angle using the Cassie-Baxter model. By gradually increasing the scanning force, we observe incrementally wetting of nanopores by water, and dewetting occurs when the force is lowered again, exhibiting reversible wetting-dewetting transitions. Further, nanoindentation measurements demonstrate that the nanomenisci show apparent elastic deformation and size-dependent effective stiffness at small indenting forces. Finally, we correlate the effective stiffness of the nanomenisci with the transition from complete rebound to partial rebound for impinging droplets on nanoporous surfaces. Our study suggests that probing the physical properties of the liquid-air menisci at the nanoscale is essential to rationalize macroscopic static and dynamic wetting phenomena on structured surfaces.

4.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430008

RESUMO

Ice-building up on the leading edge of wings and other surfaces exposed to icing atmospheric conditions can negatively influence the aerodynamic performances of aircrafts. In the past, research activities focused on understanding icing phenomena and finding effective countermeasures. Efforts have been dedicated to creating coatings capable of reducing the adhesion strength of ice to a surface. Nevertheless, coatings still lack functional stability, and their application can be harmful to health and the environment. Pulsed laser surface treatments have been proven as a viable technology to induce icephobicity on metallic surfaces. However, a study aimed to find the most effective microstructures for reducing ice adhesion still needs to be carried out. This study investigates the variation of the ice adhesion strength of micro-textured aluminum surfaces treated using laser-based methods. The icephobic performance is tested in an icing wind tunnel, simulating realistic icing conditions. Finally, it is shown that optimum surface textures lead to a reduction of the ice adhesion strength from originally 57 kPa down to 6 kPa, corresponding to a relative reduction of ~90%. Consequently, these new insights will be of great importance in the development of functionalized surfaces, permitting an innovative approach to prevent the icing of aluminum components.

5.
Phys Rev Lett ; 123(9): 094501, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524463

RESUMO

Despite strenuous research efforts for more than one century, identifying the magnitude and sign of the apparent line tension for a liquid-solid-gas system remains an elusive goal. Herein we accurately determine the apparent line tension from the size-dependent contact angle of sessile nanodrops on surfaces with different wetting properties via atomic force microscopy measurements and molecular dynamics simulations. We show that the apparent line tension has a magnitude of 10^{-11}-10^{-10} J/m, in good agreement with theoretical predictions. Furthermore, while it is positive and favors shorter contact lines for droplets on very lyophilic surfaces, the apparent line tension changes its sign and favors longer contact lines on surfaces with an apparent contact angle higher than a critical value. By analyzing the density and the potential energy of liquid molecules within the sessile droplet, we demonstrate that the sign of the apparent line tension is a thermodynamic property of the liquid-solid-gas system rather than the local effect of intermolecular interactions in the three-phase confluence region.

6.
Langmuir ; 32(33): 8322-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27448154

RESUMO

Spreading of water drops resting in equilibrium on polypropylene surfaces was initiated by dispensing surfactant-laden droplets on their apex. Upon contact of the two drops two processes were kicked-off: surfactant from the droplets spread along the water/air interface of the sessile drops and a train of capillary waves propagated along the sessile drops. The contact line of the sessile drops remained initially pinned and started spreading only when surfactant reached it while the capillary waves did not have an apparent effect on initiating drop spreading. However, surfactant influenced the propagation velocity of the capillary waves. Though the spreading dynamics of such nonhomogeneously mixed surfactant/water drops on polypropylene surfaces was initially different from that of homogeneously mixed drops, the later spreading dynamics was similar and was dominated by viscosity and surface tension in both cases. These results can help in discriminating the path of action of surfactants in bulk and at the water/air interface, which is also relevant for understanding phenomena such as superspreading.

7.
J Colloid Interface Sci ; 479: 189-198, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27388133

RESUMO

The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.

8.
Phys Rev E ; 94(6-1): 063117, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085484

RESUMO

In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We, complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We, entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We, partial rebound is only identified on the most rigid surface at We≳92. Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact-as the surfaces behave like rigid surfaces-but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.

9.
Langmuir ; 32(1): 140-50, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26652691

RESUMO

The electrowetting behavior of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) confined between two oppositely charged graphene layers is investigated using molecular dynamics simulations. By introducing charges on the surface, counterions are attracted to the surface and co-ions are repelled from it, leading to the reduction of the solid-liquid interfacial free energy and consequently the contact angle. Recently, we have shown that changes in the contact angle upon charging the surface are asymmetric with respect to surface polarity and opposite to the changes in the solid-liquid interfacial free energy. In this work, the asymmetry of the solid-liquid interfacial free energy is shown to originate from differences in structural organization of the ions at the interface, with positively polarized surfaces inducing a more favorable electrostatic arrangement of the ions. Analysis of the liquid structure in the vicinity of the three phase contact line, however, shows that the ion size asymmetry, together with differences in orientational ordering of the cations on oppositely polarized surfaces, instead leads to enhanced spreading on the negatively polarized surfaces, resulting in a corresponding contact angle asymmetry.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25215736

RESUMO

In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.


Assuntos
Glicerol , Viscosidade , Água , Molhabilidade , Ar , Vidro , Modelos Teóricos , Compostos de Organossilício , Propilaminas , Silanos , Dióxido de Silício , Tensão Superficial , Fatores de Tempo , Vibração
11.
ACS Appl Mater Interfaces ; 6(9): 6969-76, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24749513

RESUMO

In recent years, liquid repellent surfaces have attracted considerable attention because of their wide array of potential applications. In the present study, slippery surfaces were fabricated using novel sustainable, nanoporous cellulose lauroyl ester (CLE) films and slippery lubrication fluid. The nanoporous CLE films were obtained after spray-coating target surfaces using a nanoparticle suspension of CLE that was prepared via nanoprecipitation. After the deposition of the slippery liquid within the porous network, the obtained slippery surfaces exhibit both excellent liquid repellency upon liquid impact and anti-icing properties (by significantly retarding the icing time). Three-dimensional droplet manipulation was also achieved on these surfaces by taking advantage of the materials' low contact angle hysteresis and low adhesion property.

12.
Langmuir ; 30(4): 1160-8, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24456462

RESUMO

Preventing or delaying frost formation on surfaces is of significant importance in many aspects of our daily life. Despite many efforts and improvements recently achieved in the design of new icephobic materials and substrates, not all proposed solutions are universally applicable and frost formation still remains a problem in need of further flexible solutions. In this respect, we propose to take benefit from the tunable viscoelastic properties of soft polymer gel substrates, since they are known to strongly influence the dropwise condensation process of water, and to investigate condensation frosting on them. Using polymer gels with different stiffness and a hard substrate as a reference, we demonstrate their ability to delay frost formation compared to recent results reported in the literature on other solid substrates and in particular on superhydrophobic surfaces. By investigating the frost front propagation we singled out a general behavior of its dynamic evolution consisting of two processes presenting two different time scales. This general growth appears to be independent of experimental conditions as well as substrate stiffness.

13.
Adv Colloid Interface Sci ; 210: 2-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24268972

RESUMO

More than one century ago, Lippmann found that capillary forces can be effectively controlled by external electrostatic forces. As a simple example, by applying a voltage between a conducting liquid droplet and the surface it is sitting on we are able to adjust the wetting angle of the drop. Since Lippmann's findings, electrocapillary phenomena - or electrowetting - have developed into a series of tools for manipulating microdroplets on solid surfaces, or small amounts of liquids in capillaries for microfluidic applications. In this article, we briefly review some recent progress of fundamental understanding of electrowetting and address some still unsolved issues. Specifically, we focus on static and dynamic electrowetting. In static electrowetting, we discuss some basic phenomena found in DC and AC electrowetting, and some theories about the origin of contact angle saturation. In dynamic electrowetting, we introduce some studies about this rather recent area. At last, we address some other capillary phenomena governed by electrostatics and we give an outlook that might stimulate further investigations on electrowetting.

14.
Langmuir ; 29(48): 14855-64, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24188019

RESUMO

In this paper, we comparatively investigated the wetting performance of aqueous surfactant solutions in a wide range of concentrations, including conventional ionic surfactants (CTAB, SDS) and two nonionic polyether-modified trisiloxane surfactants (TSS6/3, TSS10/2), over hydrophobic polypropylene substrates. In all cases, scaling analysis of the experimental data of spreading drops showed that the early spreading stage was dominated by inertia and that the duration of this stage was not influenced by the addition of surfactant. For conventional surfactant solutions, we only observed the inertia-dominated spreading stage before the drops stopped wetting with a finite stable contact angle. For both trisiloxane surfactants, after the inertial stage we observed a second viscosity-dominated spreading stage. In this stage, TSS10/2 showed an enhanced wetting capability independent of its concentration, while TSS6/3 started to show a concentration-dependent spreading behavior that was fully developed in a third superspreading stage. Our findings suggest that the superspreading property of TSS6/3 began to take effect after a characteristic time, before which the superspreading TSS6/3 and the nonsuperspreading TSS10/2 behaved similarly. Power law fits to the superspreading regime are in agreement with an interpretation of Marangoni flows resulting from surface tension gradients.

15.
Langmuir ; 29(46): 14147-53, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24156499

RESUMO

Wetting is a universal phenomenon in nature and of interest in fundamental research as well as in engineering sciences. Usually, wetting of solid substrates by liquid drops is described by Young's equation, which relates the contact angle between the liquid and the substrate to the three interfacial tensions. This concept has been widely used and confirmed for macroscopic droplets. On the contrary, it is still matter of debate to what extent this concept is able to explain relations on the micrometer scale and below. The so-called extended Young's equation, which takes account of the specific arrangement of the molecules in the three-phase contact line by implementing a term called "line tension", is frequently used to characterize deviations from the "ideal" Young's case. In this work we tried to look into the dependence of measured contact angles of droplets on their size for a close to ideal system. We measured contact angles of ionic liquid droplets with radii between some tens and some hundreds of nanometers by atomic force microscopy on an ideally flat silicon wafer. We found that the contact angles decreased with decreasing droplet size: smaller droplets showed stronger wetting. This dependence of the contact angle on the droplet radius could not be described with the concept of line tension or the modified Young's equation. We propose simple arguments for a possible alternative concept.

16.
Sci Rep ; 3: 1991, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23771149

RESUMO

We introduce a technique for measuring the conductivity of individual hybrid metal, semiconducting core-shell and full-metal conducting particles by a microscopic four-point probe (µ-4PP) method. The four-point probe geometry allows for minimizing contact resistances between electrodes and particles. By using a focused ion beam we fabricate platinum nanoleads between four microelectrodes on a silicon chip and an individual particle, and determine the particle's conductivity via sensitive current and voltage measurements. Up to sixteen particles can be taken up by each chip, which allows for multiple conductivity measurements by simply multiplexing the electric contacts connected to a multimeter. Although, for demonstration, we used full Au (conducting) and Ag-coated latex particles (semiconducting) of a few micrometers in diameter, the method can be applied to other types of conducting or semiconducting particles of different diameters.

17.
Chem Commun (Camb) ; 49(43): 4962-4, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23609473

RESUMO

Robust, superhydrophobic and self-cleaning films were fabricated using nano- or microstructured cellulose fatty acid esters, which were prepared via nanoprecipitation. The superhydrophobic films could be coated on diverse surfaces with non-uniform shapes by distinct coating techniques.

18.
Phys Rev Lett ; 110(2): 026103, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383922

RESUMO

The early spreading of a liquid drop on a solid surface driven by inertial, capillary, and electrostatic forces is of fundamental interest, since most commonly used surfaces are (naturally) charged. We studied the effect of applying an electric potential between a drop and a surface on the early spreading of aqueous electrolyte drops. We found that spreading dynamics not only depended on the potential, but also on the electrolyte concentration. Based on molecular dynamics simulations of the ion distribution in spreading nanodrops under an applied potential, we propose a simple model to explain the relation between applied potential, electrolyte concentration, and early spreading dynamics.

19.
Langmuir ; 29(6): 1893-8, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23317106

RESUMO

It has been known for many years that a spreading liquid droplet can be appreciably slowed on a soft, viscoelastic substrate by the appearance of a "wetting ridge" or protuberance of the solid near the triple phase contact line because of capillary forces. Viscoelastic dissipation in the solid surface can outweigh that of liquid viscosity and, therefore, dominate wetting dynamics. In this paper, we show that a short, rapid spreading stage exists after initial contact. The requisite balance determining the speed of motion is between capillary forces and inertial effects. As spreading proceeds, however, inertia lessens and the lower spreading speed allow for viscoelastic effects in the solid to increase. The transition between early inertial and viscoelastic regimes is studied with high-speed photography and explained by a simple theory.

20.
J Colloid Interface Sci ; 360(2): 800-4, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21570084

RESUMO

Several authors observed in the past a larger than twofold increase in viscosity of organic liquids under the influence of an electric field of the order of 10(6) V/m. This was called electro viscous effect (EVE). Significantly higher electric fields, of up to 10(8)-10(9) V/m, arise in the electric double layer in solutions close to an electrode. Therefore, the viscosity can be expected to increase at strongly charged liquid-solid interfaces. In more recent years, it was also observed that even in the absence of an externally controlled electric field the viscosity of water can be up to 10(7) times higher close to a hydrophilic surface than in the bulk ("hydrophilic forces"). Here, we present electrochemical atomic force microscopy (EC-AFM) measurements by which we can overcome the critical threshold of the electric field H=10(6) V/m by the control of the potentials applied to both a conducting sample and a conducting tip immersed in solution. Using the EC-AFM, we have investigated for the first time the EVE in an aqueous electrolyte. We can show that by controlling the applied potential, we can control the viscosity and the thickness of the super viscous liquid layer close to the solid interface. Using this technique, we are further able to separate effects on viscosity induced by the hydrophilicity of the surfaces, by the strong nanoconfinement of the liquid between tip and surface, and by the applied electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...