Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 766702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721493

RESUMO

Over the past decades, advances in plant biotechnology have allowed the development of genetically modified maize varieties that have significantly impacted agricultural management and improved the grain yield worldwide. To date, genetically modified varieties represent 30% of the world's maize cultivated area and incorporate traits such as herbicide, insect and disease resistance, abiotic stress tolerance, high yield, and improved nutritional quality. Maize transformation, which is a prerequisite for genetically modified maize development, is no longer a major bottleneck. Protocols using morphogenic regulators have evolved significantly towards increasing transformation frequency and genotype independence. Emerging technologies using either stable or transient expression and tissue culture-independent methods, such as direct genome editing using RNA-guided endonuclease system as an in vivo desired-target mutator, simultaneous double haploid production and editing/haploid-inducer-mediated genome editing, and pollen transformation, are expected to lead significant progress in maize biotechnology. This review summarises the significant advances in maize transformation protocols, technologies, and applications and discusses the current status, including a pipeline for trait development and regulatory issues related to current and future genetically modified and genetically edited maize varieties.

2.
Evol Appl ; 12(6): 1164-1177, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31293629

RESUMO

Habitat degradation and climate change are currently threatening wild pollinators, compromising their ability to provide pollination services to wild and cultivated plants. Landscape genomics offers powerful tools to assess the influence of landscape modifications on genetic diversity and functional connectivity, and to identify adaptations to local environmental conditions that could facilitate future bee survival. Here, we assessed range-wide patterns of genetic structure, genetic diversity, gene flow, and local adaptation in the stingless bee Melipona subnitida, a tropical pollinator of key biological and economic importance inhabiting one of the driest and hottest regions of South America. Our results reveal four genetic clusters across the species' full distribution range. All populations were found to be under a mutation-drift equilibrium, and genetic diversity was not influenced by the amount of reminiscent natural habitats. However, genetic relatedness was spatially autocorrelated and isolation by landscape resistance explained range-wide relatedness patterns better than isolation by geographic distance, contradicting earlier findings for stingless bees. Specifically, gene flow was enhanced by increased thermal stability, higher forest cover, lower elevations, and less corrugated terrains. Finally, we detected genomic signatures of adaptation to temperature, precipitation, and forest cover, spatially distributed in latitudinal and altitudinal patterns. Taken together, our findings shed important light on the life history of M. subnitida and highlight the role of regions with large thermal fluctuations, deforested areas, and mountain ranges as dispersal barriers. Conservation actions such as restricting long-distance colony transportation, preserving local adaptations, and improving the connectivity between highlands and lowlands are likely to assure future pollination services.

3.
Naturwissenschaften ; 101(1): 17-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24384774

RESUMO

Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.


Assuntos
Abelhas , Evolução Biológica , DNA Mitocondrial/genética , Variação Genética , Asas de Animais/anatomia & histologia , Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Abelhas/genética , Haplótipos , Dados de Sequência Molecular , Filogenia
4.
PLoS One ; 8(5): e64815, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23738002

RESUMO

The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential neurogenesis via genes that control cell proliferation and fasciculation.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/genética , Encéfalo/crescimento & desenvolvimento , Comportamento Alimentar , Regulação da Expressão Gênica no Desenvolvimento , Animais , Abelhas/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Neurogênese/genética , Hibridização de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...