Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Death Dis ; 12(7): 636, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155195

RESUMO

Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-ß5, Survivin, TGF-ß, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/sangue , Neoplasias da Próstata/sangue , Proteoma , Proteômica , Adulto , Idoso , Linhagem Celular Tumoral , Vesículas Extracelulares/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Neoplasias da Próstata/ultraestrutura , Análise Serial de Proteínas , Reprodutibilidade dos Testes , Estudos Retrospectivos
2.
Cell Death Dis ; 10(3): 201, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814510

RESUMO

The pressure towards innovation and creation of new model systems in regenerative medicine and cancer research has fostered the development of novel potential therapeutic applications. Kidney injuries provoke a high request of organ transplants making it the most demanding system in the field of regenerative medicine. Furthermore, renal cancer frequently threaten patients' life and aggressive forms still remain difficult to treat. Ethical issues related to the use of embryonic stem cells, has fueled research on adult, patient-specific pluripotent stem cells as a model for discovery and therapeutic development, but to date, normal and cancerous renal experimental models are lacking. Several research groups are focusing on the development of organoid cultures. Since organoids mimic the original tissue architecture in vitro, they represent an excellent model for tissue engineering studies and cancer therapy testing. We established normal and tumor renal cell carcinoma organoids previously maintained in a heterogeneous multi-clone stem cell-like enriching medium. Starting from adult normal kidney specimens, we were able to isolate and propagate organoid 3D-structures composed of both differentiated and undifferentiated cells while expressing nephron specific markers. Furthermore, we were capable to establish organoids derived from cancer tissues although with a success rate inferior to that of their normal counterpart. Cancer cultures displayed epithelial and mesenchymal phenotype while retaining tumor specific markers. Of note, tumor organoids recapitulated neoplastic masses when orthotopically injected into immunocompromised mice. Our data suggest an innovative approach of long-term establishment of normal- and cancer-derived renal organoids obtained from cultures of fleshly dissociated adult tissues. Our results pave the way to organ replacement pioneering strategies as well as to new models for studying drug-induced nephrotoxicity and renal diseases. Along similar lines, deriving organoids from renal cancer patients opens unprecedented opportunities for generation of preclinical models aimed at improving therapeutic treatments.


Assuntos
Rim/patologia , Organoides/metabolismo , Medicina de Precisão/métodos , Medicina Regenerativa/métodos , Insuficiência Renal Crônica/terapia , Humanos , Insuficiência Renal Crônica/patologia
3.
J Exp Clin Cancer Res ; 37(1): 217, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185225

RESUMO

BACKGROUND: Clear cell RCC (ccRCC) accounts for approximately 75% of the renal cancer cases. Surgery treatment seems to be the best efficacious approach for the majority of patients. However, a consistent fraction (30%) of cases progress after surgery with curative intent. It is currently largely debated the use of adjuvant therapy for high-risk patients and the clinical and molecular parameters for stratifying beneficiary categories. In addition, the treatment of advanced forms lacks reliable driver biomarkers for the appropriated therapeutic choice. Thus, renal cancer patient management urges predictive molecular indicators and models for therapy-decision making. METHODS: Here, we developed and optimized new models and tools for ameliorating renal cancer patient management. We isolated from fresh tumor specimens heterogeneous multi-clonal populations showing epithelial and mesenchymal characteristics coupled to stem cell phenotype. These cells retained long lasting-tumor-propagating capacity provided a therapy monitoring approach in vitro and in vivo while being able to form parental tumors when orthotopically injected and serially transplanted in immunocompromised murine hosts. RESULTS: In line with recent evidence of multiclonal cancer composition, we optimized in vitro cultures enriched of multiple tumor-propagating populations. Orthotopic xenograft masses recapitulated morphology, grading and malignancy of parental cancers. High-grade but not the low-grade neoplasias, resulted in efficient serial transplantation in mice. Engraftment capacity paralleled grading and recurrence frequency advocating for a prognostic value of our developed model system. Therefore, in search of novel molecular indicators for therapy decision-making, we used Reverse-Phase Protein Arrays (RPPA) to analyze a panel of total and phosphorylated proteins in the isolated populations. Tumor-propagating cells showed several deregulated kinase cascades associated with grading, including angiogenesis and m-TOR pathways. CONCLUSIONS: In the era of personalized therapy, the analysis of tumor propagating cells may help improve prediction of disease progression and therapy assignment. The possibility to test pharmacological response of ccRCC stem-like cells in vitro and in orthotopic models may help define a pharmacological profiling for future development of more effective therapies. Likewise, RPPA screening on patient-derived populations offers innovative approach for possible prediction of therapy response.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Renais/genética , Recidiva Local de Neoplasia/genética , Medicina de Precisão , Animais , Linhagem da Célula/genética , Modelos Animais de Doenças , Humanos , Neoplasias Renais/patologia , Camundongos , Recidiva Local de Neoplasia/patologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 19(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652798

RESUMO

In recent years many articles have underlined the key role of nanovesicles, i.e., exosomes, as information carriers among biological systems including cancer. Tumor-derived exosomes (TEXs) are key players in the dynamic crosstalk between cancer cells and the microenvironment while promote immune system control evasion. In fact, tumors are undoubtedly capable of silencing the immune response through multiple mechanisms, including the release of exosomes. TEXs have been shown to boost tumor growth and promote progression and metastatic spreading via suppression or stimulation of the immune response towards cancer cells. The advantage of immunotherapeutic treatment alone over combining immuno- and conventional therapy is currently debated. Understanding the role of tumor exosome-cargo is of crucial importance for our full comprehension of neoplastic immonosuppression and for the construction of novel therapies and vaccines based on (nano-) vesicles. Furthermore, to devise new anti-cancer approaches, diverse groups investigated the possibility of engineering TEXs by conditioning cancer cells’ own cargo. In this review, we summarize the state of art of TEX-based immunomodulation with a particular focus on the molecular function of non-coding family genes, microRNAs. Finally, we will report on recent efforts in the study of potential applications of engineered exosomes in cancer immunotherapy.


Assuntos
Exossomos/genética , Imunoterapia/métodos , MicroRNAs/genética , Neoplasias/terapia , Vacinas Anticâncer/uso terapêutico , Humanos , Nanopartículas/uso terapêutico , Neoplasias/genética , Microambiente Tumoral
5.
Mol Cell Oncol ; 3(4): e1109744, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27652312

RESUMO

It is clear that several prostate cancers remain indolent whereas others develop into advanced forms. There is a need to improve patient management by identifying biomarkers for personalized treatment. We demonstrated that miR-15/miR-16 loss, miR-21 upregulation, and deregulation of their target genes represent a promising predictive signature of poor patient prognosis.

6.
Oncoscience ; 2(11): 920-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697526

RESUMO

Prostate cancer remains the second leading cause of death in men. It is imperative to improve patient management in identifying bio-markers for personalized treatment. We demonstrated miR-15/miR-16 loss and miR-21 up-regulation and deregulation of their target genes, which represent a promising signature for ameliorating therapy assignment and risk assessment in prostate cancer.

7.
Biomed Res Int ; 2014: 146170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309903

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. Despite considerable advances in prostate cancer early detection and clinical management, validation of new biomarkers able to predict the natural history of tumor progression is still necessary in order to reduce overtreatment and to guide therapeutic decisions. MicroRNAs are endogenous noncoding RNAs which offer a fast fine-tuning and energy-saving mechanism for posttranscriptional control of protein expression. Growing evidence indicate that these RNAs are able to regulate basic cell functions and their aberrant expression has been significantly correlated with cancer development. Therefore, detection of microRNAs in tumor tissues and body fluids represents a new tool for early diagnosis and patient prognosis prediction. In this review, we summarize current knowledge about microRNA deregulation in prostate cancer mainly focusing on the different clinical aspects of the disease. We also highlight the potential roles of microRNAs in PCa management, while also discussing several current challenges and needed future research.


Assuntos
Bases de Dados Genéticas , MicroRNAs/uso terapêutico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Medição de Risco , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
9.
Crit Rev Oncog ; 18(4): 303-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23614617

RESUMO

Prostate cancer is one of the most common causes of cancer-related death. The management of prostate cancer patients has become increasingly complex, consequently calling on the need for identifying and validating prognostic and predictive biomarkers. Growing evidence indicates that microRNAs play a crucial role in the pathobiology of neoplastic diseases. The deregulation of the cellular "miRNome" in prostate cancer has been connected with multiple tumor-promoting activities such as aberrant activation of growth signals, anti-apoptotic effects, prometastatic mechanisms, alteration of the androgen receptor pathway, and regulation of the cancer stem cell phenotype. With the elucidation of molecular mechanisms controlled by microRNAs, investigations have been conducted in an attempt to exploit these molecules in the clinical setting. Moreover, the multifaceted biological activity of microRNAs makes them an attractive candidate as anticancer agents. This review summarizes the current knowledge on microRNA deregulation in prostate cancer, and the rationale underlying their exploitation as cancer biomarkers and therapeutics.


Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/fisiologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética
10.
Cancer J ; 18(3): 253-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22647362

RESUMO

The management of prostate cancer patients is rapidly changing. The extended survival seen in randomized phase III trials with new molecules has significantly enriched the therapeutic armamentarium, and ongoing clinical trials are assessing whether the integration of these active drugs within established therapeutic regimens results in a further benefit for patients. This complex scenario is raising the need for the identification and validation of biomarkers able to drive the decision-making process during the course of the disease. Compelling evidence has documented the role of microRNAs in cancer biology, and their multifaceted biological activity makes them an attractive candidate as diagnostic, prognostic, and predictive biomarkers. This review summarizes the current knowledge about microRNA deregulation in prostate cancer, how these molecules have been investigated in the clinical setting, and strategies investigators should consider for sharpening their potential.


Assuntos
Biomarcadores Tumorais , MicroRNAs/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia
11.
Circulation ; 123(3): 282-91, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21220732

RESUMO

BACKGROUND: Diabetes mellitus impairs endothelial cell (EC) function and postischemic reparative neovascularization by molecular mechanisms that are not fully understood. microRNAs negatively regulate the expression of target genes mainly by interaction in their 3' untranslated region. METHODS AND RESULTS: We found that microRNA-503 (miR-503) expression in ECs is upregulated in culture conditions mimicking diabetes mellitus (high D-glucose) and ischemia-associated starvation (low growth factors). Under normal culture conditions, lentivirus-mediated miR-503-forced expression inhibited EC proliferation, migration, and network formation on Matrigel (comparisons versus lentivirus.GFP control). Conversely, blocking miR-503 activity by either adenovirus-mediated transfer of a miR-503 decoy (Ad.decoymiR-503) or by antimiR-503 (antisense oligonucleotide) improved the functional capacities of ECs cultured under high D-glucose/low growth factors. We identified CCNE1 and cdc25A as direct miR-503 targets which are downregulated by high glucose/low growth factors in ECs. Next, we obtained evidence that miR-503 expression is increased in ischemic limb muscles of streptozotocin-diabetic mice and in ECs enriched from these muscles. Moreover, Ad.decoymiR-503 delivery to the ischemic adductor of diabetic mice corrected diabetes mellitus-induced impairment of postischemic angiogenesis and blood flow recovery. We finally investigated miR-503 and target gene expression in muscular specimens from the amputated ischemic legs of diabetic patients. As controls, calf biopsies of nondiabetic and nonischemic patients undergoing saphenous vein stripping were used. In diabetic muscles, miR-503 expression was remarkably higher, and it inversely correlated with cdc25 protein expression. Plasma miR-503 levels were also elevated in the diabetic individuals. CONCLUSIONS: Our data suggest miR-503 as a possible therapeutic target in diabetic patients with critical limb ischemia.


Assuntos
Diabetes Mellitus Experimental , Isquemia , MicroRNAs/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Biópsia , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Extremidades/irrigação sanguínea , Expressão Gênica/fisiologia , Glucose/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Veias Umbilicais/citologia , Fosfatases cdc25/genética
12.
Recent Pat Cardiovasc Drug Discov ; 5(3): 156-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20649511

RESUMO

MicroRNAs (miRNAs) are a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of miRNAs has been described in various disease states including cancer and cardiac disease. A particular miRNA that was consistently reported to be upregulated in both cancer and various forms of cardiovascular diseases is miR-21. MiR-21 exerts oncogenic activity and therefore is considered as an oncomir. In the cardiovascular system miR-21 is enriched in fibroblasts and contributes to the development of fibrosis and heart failure. MiR-21 therefore emerges as an interesting candidate for the development of therapeutic strategies against many forms of cancer as well as heart diseases. Indeed, treatment with anti-miR-21 oligonucleotides reduced breast cancer growth. Inhibition of miR-21 by synthetic miRNA antagonists (antagomirs) improved heart function in a cardiac disease model. The same beneficial effects were observed in miR-21 knockout mice subjected to pressure-overload of the left ventricle underlining the key role of miR-21 as a therapeutic target. We here overview the current patent situation about the therapeutic use of miR-21 modulation in cancer and cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oligonucleotídeos/farmacologia , Regulação para Cima
13.
Methods Mol Biol ; 614: 149-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20225042

RESUMO

The manipulation of cell differentiation is important to create new sources for the treatment of degenerative diseases or solve cell depletion after aggressive therapy against cancer. In this chapter, the use of a tissue-specific promoter lentiviral vector to obtain a myocardial pure lineage from murine embryonic stem cells (mES) is described in detail. Since the cardiac isoform of troponin I gene product is not expressed in skeletal or other muscle types, short mouse cardiac troponin proximal promoter is used to drive reporter genes. Cells are infected simultaneously with two lentiviral vectors, the first expressing EGFP to monitor the transduction efficiency, and the other expressing a puromycin resistance gene to select the specific cells of interest. This technical approach describes a method to obtain a pure cardiomyocyte population and can be applied to other lineages of interest.


Assuntos
Diferenciação Celular , Vetores Genéticos , Lentivirus/genética , Animais , Células-Tronco Embrionárias/citologia , Camundongos , Regiões Promotoras Genéticas
14.
Endocr Relat Cancer ; 17(1): F1-17, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19779034

RESUMO

Despite much progress in prostate cancer management, new diagnostic, prognostic and therapeutic tools are needed to predict disease severity, choose among the available treatments and establish more effective therapies for advanced prostate cancer. In the last few years, compelling evidence has documented the role of microRNAs as new broad-spectrum oncogenes or tumour suppressor genes, thus their use as diagnostic, prognostic and therapeutic biomolecules is envisaged. This review extensively and critically summarizes the current knowledge about microRNA deregulation in prostate cancer disease, underlining present limits and future perspectives.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Neoplásico/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/terapia , Androgênios , Transformação Celular Neoplásica/genética , Progressão da Doença , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Masculino , MicroRNAs/análise , Invasividade Neoplásica/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Hormônio-Dependentes/diagnóstico , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/terapia , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Proteínas Proto-Oncogênicas c-myc/fisiologia
15.
PLoS One ; 3(12): e4029, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19107213

RESUMO

BACKGROUND: MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro, underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a number of in vivo approaches confirming our previous data. The ectopic overexpression of miR-221 is able, per se, to confer a high growth advantage to LNCaP-derived tumors in SCID mice. Consistently, the anti-miR-221/222 antagomir treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line, naturally expressing high levels of miR-221/222, reduces tumor growth by increasing intratumoral p27 amount; this effect is long lasting, as it is detectable as long as 25 days after the treatment. Furthermore, we provide evidence in favour of a clinical relevance of the role of miR-221/222 in prostate carcinoma, by showing their general upregulation in patient-derived primary cell lines, where we find a significant inverse correlation with p27 expression. CONCLUSIONS/SIGNIFICANCE: These findings suggest that modulating miR-221/222 levels may have a therapeutic potential in prostate carcinoma.


Assuntos
Carcinoma/patologia , Proliferação de Células/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/farmacologia , Neoplasias da Próstata/patologia , Idoso , Animais , Sequência de Bases , Carcinoma/genética , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos SCID , MicroRNAs/genética , Pessoa de Meia-Idade , Antígeno Nuclear de Célula em Proliferação/genética , Neoplasias da Próstata/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Med ; 14(11): 1271-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18931683

RESUMO

MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.


Assuntos
MicroRNAs/genética , Família Multigênica/genética , Proteínas Oncogênicas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Masculino , Camundongos , Proteínas Oncogênicas/genética , Neoplasias da Próstata/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A
17.
Haematologica ; 93(12): 1899-902, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18838478

RESUMO

Resistance to chemotherapy-induced cell death represents a major obstacle in the treatment of acute myeloid leukemia. APRIL (A Proliferation Inducing Ligand) is a member of the tumor necrosis factor superfamily that plays a key role in normal B-cell development, while promoting survival and proliferation of malignant B cells. We investigated APRIL expression and activity in acute myeloid leukemia. We found that APRIL mRNA and protein, including the secreted form, are expressed in leukemic cells of patients with M0, M2 and M4 acute myeloid leukemia subtypes but not in normal hematopoietic progenitors. Retrovirus-mediated APRIL expression in normal hematopoietic progenitors confers resistance to chemotherapeutic drugs-induced apoptosis. Conversely, blocking APRIL function by recombinant soluble APRIL receptors increased chemotherapeutic drugs-induced cell adeath in acute myeloid leukemia cells. These results indicate that APRIL acts in an autocrine fashion to protect acute myeloid leukemia cells from drug-induced death and foresee a therapeutic potential of APRIL antagonists in the treatment of acute myeloid leukemia.


Assuntos
Antineoplásicos/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/antagonistas & inibidores , Comunicação Autócrina , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Células Tumorais Cultivadas
18.
Nat Med ; 13(5): 613-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17468766

RESUMO

Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy. In vitro overexpression of miR-133 or miR-1 inhibited cardiac hypertrophy. In contrast, suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. We identified specific targets of miR-133: RhoA, a GDP-GTP exchange protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. Our data show that miR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.


Assuntos
Cardiomegalia/genética , MicroRNAs/genética , Animais , Aorta Torácica/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Oncogênica v-akt/genética , Ratos
19.
Proc Natl Acad Sci U S A ; 102(50): 18081-6, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16330772

RESUMO

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression primarily through translational repression. In erythropoietic (E) culture of cord blood CD34+ progenitor cells, the level of miR 221 and 222 is gradually and sharply down-modulated. Hypothetically, this decline could promote erythropoiesis by unblocking expression of key functional proteins. Indeed, (i) bioinformatic analysis suggested that miR 221 and 222 target the 3' UTR of kit mRNA; (ii) the luciferase assay confirmed that both miRs directly interact with the kit mRNA target site; and (iii) in E culture undergoing exponential cell growth, miR down-modulation is inversely related to increasing kit protein expression, whereas the kit mRNA level is relatively stable. Functional studies show that treatment of CD34+ progenitors with miR 221 and 222, via oligonucleotide transfection or lentiviral vector infection, causes impaired proliferation and accelerated differentiation of E cells, coupled with down-modulation of kit protein: this phenomenon, observed in E culture releasing endogenous kit ligand, is magnified in E culture supplemented with kit ligand. Furthermore, transplantation experiments in NOD-SCID mice reveal that miR 221 and 222 treatment of CD34+ cells impairs their engraftment capacity and stem cell activity. Finally, miR 221 and 222 gene transfer impairs proliferation of the kit+ TF-1 erythroleukemic cell line. Altogether, our studies indicate that the decline of miR 221 and 222 during exponential E growth unblocks kit protein production at mRNA level, thus leading to expansion of early erythroblasts. Furthermore, the results on kit+ erythroleukemic cells suggest a potential role of these miRs in cancer therapy.


Assuntos
Eritropoese/fisiologia , Regulação da Expressão Gênica/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Biologia Computacional , Eritropoese/genética , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Humanos , Luciferases , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
20.
J Exp Med ; 200(10): 1257-66, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15545353

RESUMO

The mechanisms that control neural stem and progenitor cell survival are unknown. In several pathological conditions, death receptor (DR) ligands and inflammatory cytokines exert a deleterious effect on neurons, whereas primitive neural cells migrate and survive in the site of lesion. Here, we show that even in the presence of inflammatory cytokines, DRs are unable to generate death signals in primitive neural cells. Neural stem and progenitor cells did not express caspase 8, the presence of which is required for initiating the caspase cascade. However, exogenous or cytokine-mediated expression of caspase 8 was not sufficient to restore their DR sensitivity. Searching for molecules potentially able to block DR death-inducing signaling complex (DISC), we found that primitive neural cells expressed high levels of the death effector domain-containing protein PED (also known as PEA-15). PED localized in the DISC and prevented caspase 8 recruitment and activation. Moreover, lentiviral-mediated delivery of PED antisense DNA resulted in dramatic down-regulation of the endogenous gene expression and sensitization of primitive neural cells to apoptosis mediated by inflammatory cytokines and DRs. Thus, absence of caspase 8 and high expression of PED constitute two levels of protection from apoptosis induced by DRs and inflammatory cytokines in neural stem and progenitor cells.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Multipotentes/fisiologia , Neurônios/fisiologia , Fosfoproteínas/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Reguladoras de Apoptose , Caspase 8 , Células Cultivadas , Primers do DNA , DNA Antissenso/fisiologia , Citometria de Fluxo , Técnicas de Transferência de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência , Células-Tronco Multipotentes/metabolismo , Fosfoproteínas/fisiologia , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...