Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13133-13141, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695282

RESUMO

Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.

2.
Nat Mater ; 23(4): 519-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480865

RESUMO

Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.

3.
Chemistry ; : e202303872, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477400

RESUMO

Owing to its high natural abundance compared to the commonly used transition (precious) metals, as well as its high Lewis acidity and ability to change oxidation state, aluminium has recently been explored as the basis for a range of single-site catalysts. This paper aims to establish the ground rules for the development of a new type of cationic alkene oligomerisation catalyst containing two Al(III) ions, with the potential to act co-operatively in stereoselective assembly. Five new dimers of the type [R2Al(2-py')]2 (R=Me, iBu; py'=substituted pyridyl group) with different substituents on the Al atoms and pyridyl rings have been synthesised. The formation of the undesired cis isomers can be suppressed by the presence of substituents on the 6-position of the pyridyl ring due to steric congestion, with DFT calculations showing that the selection of the trans isomer is thermodynamically controlled. Calculations show that demethylation of the dimers [Me2Al(2-py')]2 with Ph3C+ to the cations [{MeAl(2-py')}2(µ-Me)]+ is highly favourable and that the desired trans disposition of the 2-pyridyl ring units is influenced by steric effects. Preliminary experimental studies confirm that demethylation of [Me2Al(6-MeO-2-py)]2 can be achieved using [Ph3C][B(C6F5)4].

4.
ACS Appl Energy Mater ; 7(2): 414-426, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38273966

RESUMO

Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d']bis([1,2,3]triazole)-1,5-diide (-0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV-Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy.

5.
Dalton Trans ; 52(39): 14017-14026, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740353

RESUMO

Heterometal-containing polyoxotitanates (POTs) are much-studied single-source precursors (SSPs) for doped TiO2. In this work the properties of a wide range of lanthanide-containing POTs are studied to assess their potential use as SSPs for Ln-Ti hybrid oxides. The novel cage compounds [{Ti2O(OEt)8}(EtOH·LnCl)]2 (Ln = Sm, Gd, Tb, Dy, Ho, Tm and Yb) are structurally characterised. The magnetic properties of the Ln = Dy and Ho compounds were characterised using SQUID magnetometry-in both cases, there is evidence of significant uniaxial magnetic anisotropy, but magnetic relaxation is fast and therefore no single-molecule magnetic properties are observed. Upon decomposition lanthanide-doped anatase (Ln = La) or titania/LnTi-oxide mixtures are obtained, which show efficient stabilisation of the catalytically active anatase phase up to high temperatures, making the materials of potential interest for applications in photocatalysis.

6.
Inorg Chem ; 62(11): 4625-4636, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36883367

RESUMO

The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E'(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard-soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi-C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor-acceptor bond to date is observed.

7.
Inorg Chem ; 61(48): 19203-19219, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36384021

RESUMO

Single-source precursors are ubiquitous in a number of areas of chemistry and material science due to their ease of use and wide range of potential applications. The development of new single-source precursors is essential in providing entries to new areas of chemistry. In this work, we synthesize nine new structurally related bimetallic metal-zirconium alkoxides, which can be used as single-source precursors to zirconia-based materials. Detailed analysis of the structures of these complexes provides important insights into the main factors influencing their aggregation. Investigation of the thermal decomposition of these species by TGA, PXRD, SEM, and EDS reveals that they can be used to produce bimetal oxides, such as Li2ZrO3, or a mixture of metal oxides, such as CuO and ZrO2. Significantly, these studies show that thermodynamically unstable forms of zirconia, such as the tetragonal phase, can be stabilized by metal doping, providing the promise for targeted deposition of zirconia materials for specific applications.

8.
J Am Chem Soc ; 144(42): 19499-19507, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36223562

RESUMO

Cooperative H-bonding interactions are a feature of supramolecular networks involving alcohols. A family of phenol oligomers, in which the hydroxyl groups form intramolecular H-bonds, was used to investigate this phenomenon. Chains of intramolecular H-bonds were characterized using nuclear magnetic resonance (NMR) spectroscopy in solution and X-ray crystallography in the solid state. The phenol oligomers were used to make quantitative measurements of the effects of the intramolecular interactions on the strengths of intermolecular H-bonding interactions between the H-bond donor on the end of the chain and a series of H-bond acceptors. Intramolecular H-bonding interactions in the chain increase the strength of a single intermolecular H-bond between the terminal phenol and quinuclidine by up to 14 kJ mol-1 in the n-octane solution. Although the magnitude of the effect increases with the length of the H-bonded chain, the first intramolecular H-bond has a much larger effect than subsequent interactions. H-bond cooperativity is dominated by pairwise interactions between nearest neighbors, and longer range effects are negligible. The results were used to develop a simple model for cooperativity in H-bond networks using an empirical parameter κ to quantify the sensitivity of the H-bond properties of a functional group to polarization. The value of κ measured in these systems was 0.33, which means that formation of the first H-bond increases the polarity of the next H-bond donor in the chain by 33%. The cumulative cooperative effect in longer H-bonded chains reaches an asymptotic value, which corresponds to a maximum increase in the polarity of the terminal H-bond donor of 50%.


Assuntos
Álcoois , Fenóis , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Quinuclidinas
9.
J Am Chem Soc ; 144(42): 19447-19455, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251009

RESUMO

4,5-Dicyanoimidazole and 2-aminothiazole are azoles that have previously been implicated in prebiotic nucleotide synthesis. The former compound is a byproduct of adenine synthesis, and the latter compound has been shown to be capable of separating C2 and C3 sugars via crystallization as their aminals. We now report that the elusive intermediate cyanoacetylene can be captured by 4,5-dicyanoimidazole and accumulated as the crystalline compound N-cyanovinyl-4,5-dicyanoimidazole, thus providing a solution to the problem of concentration of atmospherically formed cyanoacetylene. Importantly, this intermediate is a competent cyanoacetylene surrogate, reacting with ribo-aminooxazoline in formamide to give ribo-anhydrocytidine ─ an intermediate in the divergent synthesis of purine and pyrimidine nucleotides. We also report a prebiotically plausible synthesis of 2-aminothiazole and examine the mechanism of its formation. The utilization of each of these azoles enhances the prebiotic synthesis of ribonucleotides, while their syntheses comport with the cyanosulfidic scenario we have previously described.


Assuntos
Azóis , Nucleosídeos , Nucleosídeos/química , Ribonucleotídeos/química , Nucleotídeos de Pirimidina , Purinas , Açúcares , Formamidas , Adenina
10.
Bioconjug Chem ; 33(8): 1441-1445, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35894801

RESUMO

Bicycles are constrained bicyclic peptides formed through reaction of three cysteine residues within a linear sequence with a trivalent, symmetrical small molecule scaffold. Bicycles with high binding affinities to therapeutically important targets can be discovered using screening technologies such as phage display. Increasing the chemical diversity of Bicycles should improve the probability of finding hits to new targets and can be achieved by expanding the toolbox of Bicycle forming chemistries. Gold(III) S-arylation has recently been described as a method for the efficient bioconjugation of cysteine residues under conditions compatible with phage display. Herein, we explore the scope and generality of this methodology for Bicycle construction through the synthesis and evaluation of four novel tris-Gold complexes. These new scaffolds were systematically reacted with a variety of peptide sequences, varying in amino acid loop lengths. All four scaffolds proved to be capable and selective reactive partners for each peptide sequence and afforded the desired Bicycle products in 13-48% isolated yield. This work exemplifies Gold-mediated arylation as a general approach for construction of novel, highly constrained Bicycles.


Assuntos
Cisteína , Ouro , Sequência de Aminoácidos , Ciclismo , Cisteína/química , Ouro/química , Biblioteca de Peptídeos , Peptídeos/química
11.
Chem Sci ; 13(18): 5398-5412, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655560

RESUMO

Methods for measuring enantiomeric excess (ee) of organic molecules by NMR spectroscopy provide rapid analysis using a standard technique that is readily available. Commonly this is accomplished by chiral derivatisation of the detector molecule (producing a chiral derivatisation agent, CDA), which is reacted with the mixture of enantiomers under investigation. However, these CDAs have almost exclusively been based on carbon frameworks, which are generally costly and/or difficult to prepare. In this work, a methodology based on the readily prepared inorganic cyclodiphosph(iii)azane CDA ClP(µ-N t Bu)2POBorn (Born = endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) is shown to be highly effective in the measurement of ee's of chiral amines, involving in situ reaction of the chiral amines (R*NH2) with the P-Cl bond of the CDA followed by quaternization of the phosphorus framework with methyl iodide. This results in sharp 31P NMR signals with distinct chemical shift differences between the diastereomers that are formed, which can be used to obtain the ee directly by integration. Spectroscopic, X-ray structural and DFT studies suggest that the NMR chemical shift differences between diastereomers is steric in origin, with the sharpness of these signals resulting from conformational locking of the bornyl group relative to the P2N2 ring induced by the presence of the P(v)-bonded amino group (R*NH). This study showcases cheap inorganic phosphazane CDAs as simple alternatives to organic variants for the rapid determination of ee.

12.
J Am Chem Soc ; 144(23): 10396-10406, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658467

RESUMO

Protein conjugates are valuable tools for studying biological processes or producing therapeutics, such as antibody-drug conjugates. Despite the development of several protein conjugation strategies in recent years, the ability to modify one specific amino acid residue on a protein in the presence of other reactive side chains remains a challenge. We show that monosubstituted cyclopropenone (CPO) reagents react selectively with the 1,2-aminothiol groups of N-terminal cysteine residues to give a stable 1,4-thiazepan-5-one linkage under mild, biocompatible conditions. The CPO-based reagents, all accessible from a common activated ester CPO-pentafluorophenol (CPO-PFP), allow selective modification of N-terminal cysteine-containing peptides and proteins even in the presence of internal, solvent-exposed cysteine residues. This approach enabled the preparation of a dual protein conjugate of 2×cys-GFP, containing both internal and N-terminal cysteine residues, by first modifying the N-terminal residue with a CPO-based reagent followed by modification of the internal cysteine with a traditional cysteine-modifying reagent. CPO-based reagents enabled a copper-free click reaction between two proteins, producing a dimer of a de novo protein mimic of IL2 that binds to the ß-IL2 receptor with low nanomolar affinity. Importantly, the reagents are compatible with the common reducing agent dithiothreitol (DTT), a useful property for working with proteins prone to dimerization. Finally, quantum mechanical calculations uncover the origin of selectivity for CPO-based reagents for N-terminal cysteine residues. The ability to distinguish and specifically target N-terminal cysteine residues on proteins facilitates the construction of elaborate multilabeled bioconjugates with minimal protein engineering.


Assuntos
Cisteína , Proteínas , Ciclopropanos , Cisteína/química , Indicadores e Reagentes , Proteínas/química
13.
Cryst Growth Des ; 22(6): 3961-3972, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673396

RESUMO

Terahertz time-domain spectroscopy in a transmission geometry combined with visual analysis was used to investigate the crystallization process of MgSO4 solution. Careful spectral analysis of both a feature at 1.6 THz and the overall magnitude of absorption allowed the extraction of information about the liquid phase before and during crystallization, aiding the investigation of solvation dynamics and the behavior of molecular species at phase boundaries. The method was reproducibly applied to a number of measurements on a series of solutions of three chosen concentrations at different temperatures. When increasing temperature at the end of the measurement, the dissolution of crystals was observed as well. The temperature-dependent absorption data of the semicrystalline systems were converted to the solvent concentrations using a recently developed method. Solutions of a series of concentrations were also investigated in the temperature range of 4-25 °C. The results were compared to the theoretical calculated values, and the consistent differences proved the existence of a hydration shell around the salt ions whose behavior is different from bulk water. Future work will focus on triggering nucleation at specific positions in order to study the very beginning of the crystallization process. MgSO4 heptahydrate is used as a model system in this study, while the concept and the setup can be applied to other systems.

14.
Faraday Discuss ; 235(0): 446-466, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35446321

RESUMO

The ΔpKa rule is commonly applied by chemists and crystal engineers as a guideline for the rational design of molecular salts and co-crystals. For multi-component crystals containing acid and base constituents, empirical evidence has shown that ΔpKa > 4 almost always leads to salts, ΔpKa < -1 almost always leads to co-crystals and ΔpKa between -1 and 4 can be either. This paper reviews the theoretical background of the ΔpKa rule and highlights the crucial role of solvation in determining the outcome of the potential proton transfer from acid to base. New data on the frequency of the occurrence of co-crystals and salts in multi-component crystal structures containing acid and base constituents show that the relationship between ΔpKa and the frequency of salt/co-crystal formation is influenced by the composition of the crystal. For unsolvated co-crystals/salts, containing only the principal acid and base components, the point of 50% probability for salt/co-crystal formation occurs at ΔpKa ≈ 1.4, while for hydrates of co-crystals and salts, this point is shifted to ΔpKa ≈ -0.5. For acid-base crystals with the possibility for two proton transfers, the overall frequency of occurrence of any salt (monovalent or divalent) versus a co-crystal is comparable to that of the whole data set, but the point of 50% probability for observing a monovalent salt vs. a divalent salt lies at ΔpKa,II ≈ -4.5. Hence, where two proton transfers are possible, the balance is between co-crystals and divalent salts, with monovalent salts being far less common. Finally, the overall role played by the "crystal" solvation is illustrated by the fact that acid-base complexes in the intermediate region of ΔpKa tip towards salt formation if ancillary hydrogen bonds can exist. Thus, the solvation strength of the lattice plays a key role in the stabilisation of the ions.


Assuntos
Prótons , Sais , Ligação de Hidrogênio , Íons , Sais/química
15.
Inorg Chem ; 61(16): 6223-6233, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35412823

RESUMO

The fabrication of mixed-metal oxide films holds promise for the development of practical photoelectrochemical catalyst coatings but currently presents challenges in terms of homogeneity, cost, and scalability. We report a straightforward and versatile approach to produce catalytically active zirconium-based films for electrochemical and photoelectrochemical water oxidation. The mixed-metal oxide catalyst films are derived from novel single-source precursor oxide cage compounds containing Zr with first-row transition metals such as Co, Fe, and Cu. The Zr-based film doped with Co on fluorine-doped tin oxide (FTO)-coated glass exhibits the highest electrocatalytic O2 evolution performance in an alkaline medium and an operational stability above 18 h. The deposition of this film onto a BiVO4 photoanode significantly enhances its photoelectrochemical activity toward solar water oxidation, lowering the onset potential by 0.12-0.21 V vs reversible hydrogen electrode (RHE) and improving the maximum photocurrent density by ∼50% to 2.41 mA cm-2 for the CoZr-coated BiVO4 photoanodes compared to that for bare BiVO4.

16.
Angew Chem Int Ed Engl ; 61(32): e202202133, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35415950

RESUMO

Sodium-ion batteries (SIBs) are a promising grid-level storage technology due to the abundance and low cost of sodium. The development of new electrolytes for SIBs is imperative since it impacts battery life and capacity. Currently, sodium hexafluorophosphate (NaPF6 ) is used as the benchmark salt, but is highly hygroscopic and generates toxic HF. This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B(hfip)4 ]⋅DME (hfip=hexafluoroisopropyloxy, Oi PrF ) and Na[B(pp)2 ] (pp=perfluorinated pinacolato, O2 C2 (CF3 )4 ) have excellent electrochemical performance. The [B(pp)2 ]- anion also exhibits a high tolerance to air and water. Both electrolytes give more stable electrode-electrolyte interfaces than conventionally used NaPF6 , as demonstrated by impedance spectroscopy and cyclic voltammetry. Furthermore, they give greater cycling stability and comparable capacity to NaPF6 for SIBs, as shown in commercial pouch cells.

17.
Mol Pharm ; 19(1): 227-234, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854685

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) is applied to two polymorphs of acetylsalicylic acid (aspirin), and the experimental spectra are compared to lattice dynamical calculations using high accuracy density functional theory. The calculations confirm that forms I and II have very close energetic and thermodynamic properties and also that they show similar spectral features in the far-infrared region, reflecting the high degree of similarity in their crystal structures. Unique vibrational modes are identified for each polymorph which allow them to be distinguished using THz-TDS measurements. The observation of spectral features attributable to both polymorphic forms in a single sample, however, provides further evidence to support the hypothesis that crystalline aspirin typically comprises intergrown domains of forms I and II. Differences observed in the baseline of the measured THz-TDS spectra indicate a greater degree of structural disorder in the samples of form II. Calculated Gibbs free-energy curves show a turning point at 75 K, inferring that form II is expected to be more stable than form I above this temperature as a result of its greater vibrational entropy. The calculations do not account for any differences in configurational entropy that may arise from expected structural defects. Further computational work on these structures, such as ab initio molecular dynamics, would be very useful to further explore this perspective. Here, aspirin is a model system to show how the additional insight from the low-frequency vibrational information complements the structural data and allows for quantitative thermodynamic information of pharmaceutical polymorphs to be extracted. The methodology is directly applicable to other polymorphic systems.


Assuntos
Aspirina/química , Cristalização , Espectroscopia Terahertz/métodos , Termodinâmica , Vibração
18.
Dalton Trans ; 50(46): 17202-17207, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34783818

RESUMO

A range of titanium compounds containing the naturally occurring dyes quinizarin (QH2) and alizarin (AH2) was synthesized and structurally characterized in the solid state. Among these is the first examples of a discrete metallocyclic arrangement formed exclusively using quinizarin ligands and the first examples of lanthanide containing titanium compounds of the alizarin family of ligands.

19.
Dalton Trans ; 50(41): 14551-14559, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698325

RESUMO

The effects of moving the donor N-atom from the 2-position in lithium (2-pyridyl)- and (2-quinolyl)aluminates to the more remote position in (8-quinolyl)aluminates have been investigated by solid-state structural and DFT computational studies of the new complexes [{EtAl(2-qy)3}Li(µ-X)Li(THF)3] (X = Cl/Br 62 : 38) [(1)Li(µ-X)Li(THF)3], [{(EtAl(2-qy)3)Li}2(µ-Br)]-Li(THF)4+ [{1Li}2(µ-Br)]-Li(THF)4+, [{EtAl(2-Me-8-qy)3}Li] [(2)Li], [{Me2Al(2-Me-8-qy)2}Li(THF)] [(3a)Li(THF)], [{Me2Al(6-Me-2-py)2}Li(THF)2] [(4)Li(THF)2] and [{{EtAl(2-Me-8-qy)2}2O}(Li2THF)] (5). Increasing the remoteness of the donor N-atom from the bridgehead results in large differences in the coordination of the Li+ cations by the (8-quinolyl)aluminate anions compared to 2-quinolyl or 2-pyridyl counterparts. The results are of potential interest in understanding how the coordination sites of ligands of this type can be tuned for the coordination requirements of specific metal centres.

20.
Angew Chem Int Ed Engl ; 60(47): 25005-25012, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34519412

RESUMO

Conjugated polymers are an important class of chromophores for optoelectronic devices. Understanding and controlling their excited state properties, in particular, radiative and non-radiative recombination processes are among the greatest challenges that must be overcome. We report the synthesis and characterization of a molecularly encapsulated naphthalene diimide-based polymer, one of the most successfully used motifs, and explore its structural and optical properties. The molecular encapsulation enables a detailed understanding of the effect of interpolymer interactions. We reveal that the non-encapsulated analogue P(NDI-2OD-T) undergoes aggregation enhanced emission; an effect that is suppressed upon encapsulation due to an increasing π-interchain stacking distance. This suggests that decreasing π-stacking distances may be an attractive method to enhance the radiative properties of conjugated polymers in contrast to the current paradigm where it is viewed as a source of optical quenching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...