Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World Neurosurg X ; 18: 100158, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37081926

RESUMO

Objectives: The distinctive bilateral carotid sheaths (CS) reside in the neck region and form part of the deep cervical fasciae. Aspects of the CS anatomy are controversial, most notably its specific attachment sites and fascial makeup, which are key determinants for the spread of tumours and infections and surgical planning. This review aimed to organise the pertinent aspects relating to CS anatomy and pathology, explore their clinical relevance and highlight areas of disagreement in the literature. Methods: A narrative review identified key papers relating to CS anatomy, histology, embryology, pathology and clinical and surgical significance using PubMed and Google Scholar. This was supported by a systematic review focused on the fascia forming the CS which was conducted using PubMed, Web of Science and Core Collection which yielded 22 papers. Results: and Discussion: The CS surrounds the internal carotid artery, internal jugular vein, cranial nerves IX - XII, lymph nodes and nervous plexuses as they course from the jugular foramen superiorly down along into the mediastinum inferiorly. There are contradicting descriptions regarding the CS attachments at the extracranial skull base and within the mediastinum. Author descriptions of the CS fasciae are complex, varied and incongruent. Pathologies affecting the CS include malignancies of the nerves, vascular lesions and utilisation of the CS space as a corridor for the spread of deep neck infections. Conclusion: This paper collates and presents pertinent anatomical and clinical aspects regarding the CS. A proper knowledge of the CS anatomy and structural relationships will optimise surgical approaches and orientation when operating within the region.

2.
World Neurosurg ; 148: 178-187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33516868

RESUMO

BACKGROUND: The anatomy and spatial relationships of the dural sac comprising the Meckel cave (MC) and its ensheathed trigeminal ganglion (TG) are exceedingly intricate and complex. There are conflicting accounts in the literature regarding the dural configuration of the MC around the ganglion and the dual embryology of the MC and TG is still unclear. METHODS: A combined systematic and narrative literature review was conducted to collate articles addressing MC and TG anatomy, in addition to their embryology, role in tumor spread, somatotopy, and association with trigeminal neuralgia. RESULTS: Three key anatomic models by Paturet (1964), Lazorthes (1973), and Lang and Ferner (1983) have been put forward to show the arrangement of the MC around the TG. The TG is formed from both neural crest and placodal cells and drags the enveloping dura caudally to form the MC prolongation during development. Both a mediolateral and dorsoventral somatotopic arrangement of neurons exists in the TG, which corresponds to the 3 nerve divisions, of which V2 and V3 are prone to perineural tumor spread along their course. CONCLUSIONS: Sound knowledge concerning the dural arrangement of the MC and the trigeminal divisions will be invaluable in optimally treating cancers in this region, and understanding TG somatotopy will immensely improve treatment of trigeminal neuralgia in terms of specificity, efficacy, and positive patient outcomes.


Assuntos
Fossa Craniana Posterior/cirurgia , Procedimentos Neurocirúrgicos/métodos , Gânglio Trigeminal/anatomia & histologia , Dura-Máter/anatomia & histologia , Dura-Máter/cirurgia , Humanos , Gânglio Trigeminal/cirurgia , Neuralgia do Trigêmeo/cirurgia
3.
World Neurosurg ; 142: 425-433, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32711147

RESUMO

OBJECTIVE: The extradural neural axis compartment (EDNAC) is an adipovenous zone located between the meningeal and endosteal layers of the dura and has been minimally investigated. It runs along the neuraxis from the orbits down to the coccyx and contains fat, valveless veins, arteries, and nerves. In the present review, we have outlined the current knowledge regarding the structural and functional significance of the EDNAC. METHODS: We performed a narrative review of the reported EDNAC data. RESULTS: The EDNAC can be organized into 4 regional enlargements along its length: the orbital, lateral sellar, clival, and spinal segments, with a lateral sellar orbital junction linking the orbital and lateral sellar segments. The orbital EDNAC facilitates the movement of the eyeball and elsewhere allows limited motility for the meningeal dura. The major nerves and vessels are cushioned and supported by the EDNAC. Increased intra-abdominal pressure will also be conveyed along the spinal EDNAC, causing increased venous pressure in the spine and cranium. From a pathological perspective, the EDNAC functions as a low-resistance, extradural passageway that might facilitate tumor encroachment and expansion. CONCLUSIONS: Clinicians should be aware of the extent and significance of the EDNAC, which could affect skull base and spine surgery, and have an understanding of the tumor spread pathways and growth patterns. Comparatively little research has focused on the EDNAC since its initial description. Therefore, future investigations are required to provide more information on this underappreciated component of neuraxial anatomy.


Assuntos
Meninges/anatomia & histologia , Tecido Adiposo/anatomia & histologia , Vasos Sanguíneos/anatomia & histologia , Humanos
4.
J Neurosurg ; 135(1): 136-146, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32619988

RESUMO

OBJECTIVE: The extradural neural axis compartment (EDNAC) is an adipovenous zone that is located between the meningeal (ML) and endosteal (EL) layers of the dura mater and has been minimally investigated in the jugular foramen (JF) region. In this study, the authors aimed to explore the fine architecture of the EDNAC within the JF and evaluate whether the EDNAC can be used as a component for JF compartmentalization. METHODS: A total of 46 cadaveric heads (31 male, 15 female; age range 54-96 years) and 30 dry skulls were examined in this study. Twelve of 46 cadaveric heads were plastinated as a series of transverse (7 sets), coronal (3 sets), and sagittal (2 sets) slices and examined using stereomicroscopy and confocal microscopy. The dural entry points of the JF cranial nerves were recorded in 34 cadaveric skulls. The volumes of the JF, intraforaminal EDNAC, and internal jugular vein (IJV) were quantified. RESULTS: Based on constant osseous landmarks, the JF was subdivided into preforaminal, intraforaminal, and subforaminal segments. The ML-derived fascial sheath along the anteromedial wall of the IJV demarcated the "venous portion" and the "EDNAC portion" of the bipartite JF. The EDNAC did not surround the intraforaminal IJV and comprised an ML-derived dural fibrous network and an adipose matrix. A fibrovenous curtain subdivided the intraforaminal EDNAC into a small anterior column containing cranial nerve (CN) IX and the anterior condylar venous plexus and a large posterior adipose column containing CNs X and XI. In the intraforaminal segment, the IJV occupied a slightly larger space in the foramen (57%; p < 0.01), whereas in the subforaminal segment it occupied a space of similar size to that of the EDNAC. CONCLUSIONS: Excluding the IJV, the neurovascular structures in the JF traverse the dural fibrous network that is dominant in the foraminal EDNAC. The results of this study will contribute to anatomical knowledge of the obscure yet crucially important JF region, increase understanding of foraminal tumor growth and spread patterns, and facilitate the planning and execution of surgical interventions.

5.
World Neurosurg ; 136: 49-57, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926358

RESUMO

BACKGROUND: At present, no consensus has been reached on the compartmental subdivision of the jugular foramen (JF), which can complicate surgical planning in this area and hinder understanding of foraminal tumor growth patterns. The extradural neural axis compartment (EDNAC) might aid in producing a standardized model in the future. In the present review, we have summarized the models of JF compartmentalization and analyzed how sound they are anatomically. METHODS: The present narrative review identified the key studies and supporting reports that had discussed, referenced, or first presented models of JF compartmentalization. RESULTS: Three intraforaminal components serve as the basis for JF compartmentalization: the fibro-osseous bridge, neurovascular contents, and EDNAC. A total of 4 models have been proposed to date. These include the 2-part (bipartite) models by Hovelacque (1934) and Shapiro (1972) and the 3-part (tripartite) subdivisions by Katsuta (1997) and Bernard (2018). CONCLUSIONS: The bipartite model has been criticized as being oversimplified and lacking surgical validity. However, support for this compartmentation has persisted despite the increasing popularity of the tripartite model. The 3-part subdivision of Bernard can be considered the most anatomically faithful model to date owing to the consideration of the dura and EDNAC. It is important that future studies consider the entire anatomy of the JF, which may generate an anatomically accurate and surgically applicable compartmental model.


Assuntos
Forâmen Jugular/anatomia & histologia , Nervo Acessório/anatomia & histologia , Cavidades Cranianas/anatomia & histologia , Dura-Máter/anatomia & histologia , Nervo Glossofaríngeo/anatomia & histologia , Humanos , Veias Jugulares/anatomia & histologia , Modelos Anatômicos , Osso Occipital/anatomia & histologia , Osso Petroso/anatomia & histologia , Nervo Vago/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...